These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 22561856)
1. Stabilization of a raw-starch-digesting amylase by multipoint covalent attachment on glutaraldehyde-activated amberlite beads. Nwagu TN; Okolo BN; Aoyagi H J Microbiol Biotechnol; 2012 May; 22(5):628-36. PubMed ID: 22561856 [TBL] [Abstract][Full Text] [Related]
2. Stabilization of a raw starch digesting amylase from Aspergillus carbonarius via immobilization on activated and non-activated agarose gel. Nwagu TN; Okolo BN; Aoyagi H World J Microbiol Biotechnol; 2012 Jan; 28(1):335-45. PubMed ID: 22806809 [TBL] [Abstract][Full Text] [Related]
3. Chemical modification with phthalic anhydride and chitosan: Viable options for the stabilization of raw starch digesting amylase from Aspergillus carbonarius. Nwagu TN; Okolo B; Aoyagi H; Yoshida S Int J Biol Macromol; 2017 Jun; 99():641-647. PubMed ID: 28279767 [TBL] [Abstract][Full Text] [Related]
4. Enhancement of stability and activity of RSD amylase from Paenibacillus lactis OPSA3 for biotechnological applications by covalent immobilization on green silver nanoparticles. Ugwuoji ET; Eze IS; Nwagu TNT; Ezeogu LI Int J Biol Macromol; 2024 Nov; 279(Pt 1):135132. PubMed ID: 39208879 [TBL] [Abstract][Full Text] [Related]
5. Affinity covalent immobilization of glucoamylase onto ρ-benzoquinone-activated alginate beads: II. Enzyme immobilization and characterization. Eldin MS; Seuror EI; Nasr MA; Tieama HA Appl Biochem Biotechnol; 2011 May; 164(1):45-57. PubMed ID: 21063806 [TBL] [Abstract][Full Text] [Related]
6. Stabilization of beta-galactosidase (from peas) by immobilization onto amberlite MB-150 beads and its application in lactose hydrolysis. Dwevedi A; Kayastha AM J Agric Food Chem; 2009 Jan; 57(2):682-8. PubMed ID: 19128007 [TBL] [Abstract][Full Text] [Related]
7. Improving the thermostability of raw-starch-digesting amylase from a Cytophaga sp. by site-directed mutagenesis. Shiau RJ; Hung HC; Jeang CL Appl Environ Microbiol; 2003 Apr; 69(4):2383-5. PubMed ID: 12676725 [TBL] [Abstract][Full Text] [Related]
8. Stabilization of dimeric β-glucosidase from Aspergillus niger via glutaraldehyde immobilization under different conditions. Vazquez-Ortega PG; Alcaraz-Fructuoso MT; Rojas-Contreras JA; López-Miranda J; Fernandez-Lafuente R Enzyme Microb Technol; 2018 Mar; 110():38-45. PubMed ID: 29310854 [TBL] [Abstract][Full Text] [Related]
9. Production, immobilization and thermodynamic studies of free and immobilized Aspergillus awamori amylase. Karam EA; Abdel Wahab WA; Saleh SAA; Hassan ME; Kansoh AL; Esawy MA Int J Biol Macromol; 2017 Sep; 102():694-703. PubMed ID: 28438682 [TBL] [Abstract][Full Text] [Related]
10. Preparation, characterization and stability studies of cross-linked α-amylase aggregates (CLAAs) for continuous liquefaction of starch. Ullah H; Pervez S; Ahmed S; Haleem KS; Qayyum S; Niaz Z; Nawaz MA; Nawaz F; Subhan F; Tauseef I Int J Biol Macromol; 2021 Mar; 173():267-276. PubMed ID: 33454331 [TBL] [Abstract][Full Text] [Related]
12. Cicer α-galactosidase immobilization onto chitosan and Amberlite MB-150: optimization, characterization, and its applications. Singh N; Kayastha AM Carbohydr Res; 2012 Sep; 358():61-6. PubMed ID: 22818828 [TBL] [Abstract][Full Text] [Related]
13. Immobilization of procerain B, a cysteine endopeptidase, on amberlite MB-150 beads. Singh AN; Singh S; Dubey VK PLoS One; 2013; 8(6):e66000. PubMed ID: 23776589 [TBL] [Abstract][Full Text] [Related]
14. Amberlite IRA 900 versus calcium alginate in immobilization of a novel, engineered β-fructofuranosidase for short-chain fructooligosaccharide synthesis from sucrose. Bedzo OKK; Trollope K; Gottumukkala LD; Coetzee G; Görgens JF Biotechnol Prog; 2019 May; 35(3):e2797. PubMed ID: 30816638 [TBL] [Abstract][Full Text] [Related]
15. Improvement of catalytic properties of starch hydrolyzing fungal amyloglucosidase: Utilization of agar-agar as an organic matrix for immobilization. Pervez S; Nawaz MA; Jamal M; Jan T; Maqbool F; Shah I; Aman A; Ul Qader SA Carbohydr Res; 2019 Dec; 486():107860. PubMed ID: 31683070 [TBL] [Abstract][Full Text] [Related]
16. Immobilization of α-amylase and amyloglucosidase onto ion-exchange resin beads and hydrolysis of natural starch at high concentration. Gupta K; Jana AK; Kumar S; Maiti M Bioprocess Biosyst Eng; 2013 Nov; 36(11):1715-24. PubMed ID: 23572179 [TBL] [Abstract][Full Text] [Related]
17. Efficient Immobilization of Porcine Pancreatic α-Amylase on Amino-Functionalized Magnetite Nanoparticles: Characterization and Stability Evaluation of the Immobilized Enzyme. Akhond M; Pashangeh K; Karbalaei-Heidari HR; Absalan G Appl Biochem Biotechnol; 2016 Nov; 180(5):954-968. PubMed ID: 27240662 [TBL] [Abstract][Full Text] [Related]
18. Stabilization of Aspergillus parasiticus cytosine deaminase by immobilization on calcium alginate beads improved enzyme operational stability. Zanna H; Nok AJ; Ibrahim S; Inuwa HM J Enzyme Inhib Med Chem; 2013 Dec; 28(6):1217-20. PubMed ID: 23030840 [TBL] [Abstract][Full Text] [Related]
19. Immobilization of amyloglucosidase onto macroporous cryogels for continuous glucose production from starch. Uygun M; Akduman B; Ergönül B; Aktaş Uygun D; Akgöl S; Denizli A J Biomater Sci Polym Ed; 2015; 26(16):1112-25. PubMed ID: 26235358 [TBL] [Abstract][Full Text] [Related]
20. TiO₂ beads and TiO₂-chitosan beads for urease immobilization. Ispirli Doğaç Y; Deveci I; Teke M; Mercimek B Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():429-35. PubMed ID: 25063138 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]