These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 22562028)

  • 1. Comparative study of bone repair using porous hydroxyapatite/ β-tricalcium phosphate and xenograft scaffold in rabbits with tibia defect.
    Bagher Z; Rajaei F; Shokrgozar M
    Iran Biomed J; 2012; 16(1):18-24. PubMed ID: 22562028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydroxyapatite Dome for Bone Neoformation in Rabbit Tibia.
    Maeda NT; Yoshimoto M; Allegrini S; Bressiani AH
    Int J Oral Maxillofac Implants; 2016; 31(3):571-9. PubMed ID: 27183066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sr-HA scaffolds fabricated by SPS technology promote the repair of segmental bone defects.
    Hu B; Meng ZD; Zhang YQ; Ye LY; Wang CJ; Guo WC
    Tissue Cell; 2020 Oct; 66():101386. PubMed ID: 32933709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mesenchymal stem cells and porous β-tricalcium phosphate composites prepared through stem cell screen-enrich-combine(-biomaterials) circulating system for the repair of critical size bone defects in goat tibia.
    Chu W; Gan Y; Zhuang Y; Wang X; Zhao J; Tang T; Dai K
    Stem Cell Res Ther; 2018 Jun; 9(1):157. PubMed ID: 29895312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tissue-engineered bone formation in vivo for artificial laminae of the vertebral arch using β-tricalcium phosphate bioceramics seeded with mesenchymal stem cells.
    Dong Y; Chen X; Hong Y
    Spine (Phila Pa 1976); 2013 Oct; 38(21):E1300-6. PubMed ID: 23873227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequential fluorescent labeling observation of maxillary sinus augmentation by a tissue-engineered bone complex in canine model.
    Jiang XQ; Wang SY; Zhao J; Zhang XL; Zhang ZY
    Int J Oral Sci; 2009 Mar; 1(1):39-46. PubMed ID: 20690503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Repair of cranial defects with bone marrow derived mesenchymal stem cells and beta-TCP scaffold in rabbits].
    Bo B; Wang CY; Guo XM
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2003 Jul; 17(4):335-8. PubMed ID: 12920731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repair of goat tibial defects with bone marrow stromal cells and beta-tricalcium phosphate.
    Liu G; Zhao L; Zhang W; Cui L; Liu W; Cao Y
    J Mater Sci Mater Med; 2008 Jun; 19(6):2367-76. PubMed ID: 18158615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ectopic osteogenic ability of calcium phosphate scaffolds cultured with osteoblasts.
    Nan K; Sun S; Li Y; Chen H; Wu T; Lu F
    J Biomed Mater Res A; 2010 May; 93(2):464-8. PubMed ID: 19582839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [An experimental study on repairing bone defect with composite of beta-tricalcium phosphate-hyaluronic acid-type I collagen-marrow stromal cells].
    Wei A; Liu S; Peng H; Tao H
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2005 Jun; 19(6):468-72. PubMed ID: 16038466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tricalcium phosphate/hydroxyapatite (TCP-HA) bone scaffold as potential candidate for the formation of tissue engineered bone.
    Sulaiman SB; Keong TK; Cheng CH; Saim AB; Idrus RB
    Indian J Med Res; 2013 Jun; 137(6):1093-101. PubMed ID: 23852290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A biodegradable porous composite scaffold of PGA/beta-TCP for bone tissue engineering.
    Cao H; Kuboyama N
    Bone; 2010 Feb; 46(2):386-95. PubMed ID: 19800045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone marrow-derived osteoblasts seeded into porous beta-tricalcium phosphate to repair segmental defect in canine's mandibula.
    Wu W; Chen X; Mao T; Chen F; Feng X
    Ulus Travma Acil Cerrahi Derg; 2006 Oct; 12(4):268-76. PubMed ID: 17029116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Establishment and biological effect evaluation of prevascularized porous β-tricalcium phosphate tissue engineered bone].
    Huang M; Fan J; Ma Z; Li J; Lu Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2022 May; 36(5):625-632. PubMed ID: 35570639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of teriparatide on bone formation in novel unidirectional porous beta-tricalcium phosphate.
    Kumagai H; Funayama T; Sugaya H; Yoshioka T; Makihara T; Tomaru Y; Arai N; Sato K; Miura K; Noguchi H; Abe T; Koda M; Mishima H; Yamazaki M
    J Biomater Appl; 2019 Nov; 34(5):721-727. PubMed ID: 31387420
    [No Abstract]   [Full Text] [Related]  

  • 16. A comparison between the efficacy of Bio-Oss, hydroxyapatite tricalcium phosphate and combination of mesenchymal stem cells in inducing bone regeneration.
    Vahabi S; Amirizadeh N; Shokrgozar MA; Mofeed R; Mashhadi A; Aghaloo M; Sharifi D; Jabbareh L
    Chang Gung Med J; 2012; 35(1):28-37. PubMed ID: 22483425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BMSC seeding in different scaffold incorporation with hyperbaric oxygen treats seawater-immersed bony defect.
    Zhang G; Chen X; Cheng X; Ma W; Chen C
    J Orthop Surg Res; 2021 Apr; 16(1):249. PubMed ID: 33849602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering biomimetic periosteum with β-TCP scaffolds to promote bone formation in calvarial defects of rats.
    Zhang D; Gao P; Li Q; Li J; Li X; Liu X; Kang Y; Ren L
    Stem Cell Res Ther; 2017 Jun; 8(1):134. PubMed ID: 28583167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [New porous beta-tricalcium phosphate as scaffold for bone tissue engineering].
    Liu Y; Pei G; Jiang S
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Oct; 21(10):1123-7. PubMed ID: 17990783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative performance of three ceramic bone graft substitutes.
    Hing KA; Wilson LF; Buckland T
    Spine J; 2007; 7(4):475-90. PubMed ID: 17630146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.