These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 22562028)

  • 21. The effect of calcium phosphate composite scaffolds on the osteogenic differentiation of rabbit dental pulp stem cells.
    Ling LE; Feng L; Liu HC; Wang DS; Shi ZP; Wang JC; Luo W; Lv Y
    J Biomed Mater Res A; 2015 May; 103(5):1732-45. PubMed ID: 25131439
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The use of TriCalcium Phosphate (TCP) and stem cells for the regeneration of osteoperiosteal critical-size mandibular bony defects, an in vitro and preclinical study.
    Alfotawei R; Naudi KB; Lappin D; Barbenel J; Di Silvio L; Hunter K; McMahon J; Ayoub A
    J Craniomaxillofac Surg; 2014 Sep; 42(6):863-9. PubMed ID: 24485270
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of 2 Different Formulations of Artificial Bone for a Hybrid Implant With a Tissue-Engineered Construct Derived From Synovial Mesenchymal Stem Cells: A Study Using a Rabbit Osteochondral Defect Model.
    Shimomura K; Moriguchi Y; Nansai R; Fujie H; Ando W; Horibe S; Hart DA; Gobbi A; Yoshikawa H; Nakamura N
    Am J Sports Med; 2017 Mar; 45(3):666-675. PubMed ID: 28272938
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Collagen I gel can facilitate homogenous bone formation of adipose-derived stem cells in PLGA-beta-TCP scaffold.
    Hao W; Hu YY; Wei YY; Pang L; Lv R; Bai JP; Xiong Z; Jiang M
    Cells Tissues Organs; 2008; 187(2):89-102. PubMed ID: 17938566
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessment of tricalcium phosphate/collagen (TCP/collagene)nanocomposite scaffold compared with hydroxyapatite (HA) on healing of segmental femur bone defect in rabbits.
    Mohseni M; Jahandideh A; Abedi G; Akbarzadeh A; Hesaraki S
    Artif Cells Nanomed Biotechnol; 2018 Mar; 46(2):242-249. PubMed ID: 28503937
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bone augmentation with autologous periosteal cells and two different calcium phosphate scaffolds under an occlusive titanium barrier: an experimental study in rabbits.
    Maréchal M; Eyckmans J; Schrooten J; Schepers E; Luyten FP; van Steenberghe D
    J Periodontol; 2008 May; 79(5):896-904. PubMed ID: 18454669
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of the osteoconductivity of α-tricalcium phosphate, β-tricalcium phosphate, and hydroxyapatite combined with or without simvastatin in rat calvarial defect.
    Rojbani H; Nyan M; Ohya K; Kasugai S
    J Biomed Mater Res A; 2011 Sep; 98(4):488-98. PubMed ID: 21681941
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Effect of Stromal-Derived Factor 1
    Jin F; Cai Q; Wang W; Fan X; Lu X; He N; Ding J
    Biomed Res Int; 2021; 2021():8882355. PubMed ID: 34046501
    [No Abstract]   [Full Text] [Related]  

  • 29. Repair of rabbit radial bone defects using bone morphogenetic protein-2 combined with 3D porous silk fibroin/β-tricalcium phosphate hybrid scaffolds.
    Song J; Kim J; Woo HM; Yoon B; Park H; Park C; Kang BJ
    J Biomater Sci Polym Ed; 2018 Apr; 29(6):716-729. PubMed ID: 29405844
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced bone regeneration with a novel synthetic bone substitute in combination with a new natural cross-linked collagen membrane: radiographic and histomorphometric study.
    Calvo-Guirado JL; Ramírez-Fernández MP; Maté-Sánchez JE; Bruno N; Velasquez P; de Aza PN
    Clin Oral Implants Res; 2015 Apr; 26(4):454-464. PubMed ID: 24720519
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chitosan/gelatin/platelet gel enriched by a combination of hydroxyapatite and beta-tricalcium phosphate in healing of a radial bone defect model in rat.
    Oryan A; Alidadi S; Bigham-Sadegh A; Meimandi-Parizi A
    Int J Biol Macromol; 2017 Aug; 101():630-637. PubMed ID: 28363647
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In-vivo efficacy of compliant 3D nano-composite in critical-size bone defect repair: a six month preclinical study in rabbit.
    Sagar N; Pandey AK; Gurbani D; Khan K; Singh D; Chaudhari BP; Soni VP; Chattopadhyay N; Dhawan A; Bellare JR
    PLoS One; 2013; 8(10):e77578. PubMed ID: 24204879
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficacy of prevascularization for segmental bone defect repair using β-tricalcium phosphate scaffold in rhesus monkey.
    Fan H; Zeng X; Wang X; Zhu R; Pei G
    Biomaterials; 2014 Aug; 35(26):7407-15. PubMed ID: 24909103
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tissue-engineered bone using mesenchymal stem cells and a biodegradable scaffold.
    Boo JS; Yamada Y; Okazaki Y; Hibino Y; Okada K; Hata K; Yoshikawa T; Sugiura Y; Ueda M
    J Craniofac Surg; 2002 Mar; 13(2):231-9; discussion 240-3. PubMed ID: 12000879
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Segmental composite porous scaffolds with either osteogenesis or anti-bone resorption properties tested in a rabbit ulna defect model.
    Chen S; Lau P; Lei M; Peng J; Tang T; Wang X; Qin L; Kumta SM
    J Tissue Eng Regen Med; 2017 Jan; 11(1):34-43. PubMed ID: 24668843
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetics of in vivo bone deposition by bone marrow stromal cells within a resorbable porous calcium phosphate scaffold: an X-ray computed microtomography study.
    Papadimitropoulos A; Mastrogiacomo M; Peyrin F; Molinari E; Komlev VS; Rustichelli F; Cancedda R
    Biotechnol Bioeng; 2007 Sep; 98(1):271-81. PubMed ID: 17657771
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Osteogenic potential of platelet-rich plasma combined with cells and artificial bone].
    Li S; Zhang C; Yuan T
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Jan; 21(1):58-64. PubMed ID: 17305007
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Angiogenesis and new bone formation in novel unidirectional porous beta-tricalcium phosphate: a histological study.
    Kumagai H; Makihara T; Funayama T; Sato K; Noguchi H; Abe T; Koda M; Yamazaki M
    J Artif Organs; 2019 Dec; 22(4):294-299. PubMed ID: 31325063
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bony ingrowth and implant substitution.
    Eggli PS; Müller W; Schenk RK
    Clin Orthop Relat Res; 1988 Jul; (232):127-38. PubMed ID: 2838207
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Repair of calvarial defect using a tissue-engineered bone with simvastatin-loaded β-tricalcium phosphate scaffold and adipose derived stem cells in rabbits].
    Xu LY; Sun XJ; Zhang XL; Jin YQ; Wu YQ; Jiang XQ
    Shanghai Kou Qiang Yi Xue; 2013 Aug; 22(4):361-7. PubMed ID: 24100891
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.