BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 22562049)

  • 1. α-Fe2O3 nanowall arrays: hydrothermal preparation, growth mechanism and excellent rate performances for lithium ion batteries.
    Lei D; Zhang M; Qu B; Chen L; Wang Y; Zhang E; Xu Z; Li Q; Wang T
    Nanoscale; 2012 Jun; 4(11):3422-6. PubMed ID: 22562049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A three-dimensional hierarchical Fe2O3@NiO core/shell nanorod array on carbon cloth: a new class of anode for high-performance lithium-ion batteries.
    Xiong QQ; Tu JP; Xia XH; Zhao XY; Gu CD; Wang XL
    Nanoscale; 2013 Sep; 5(17):7906-12. PubMed ID: 23851378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. α-Fe2O3 nanoparticle-loaded carbon nanofibers as stable and high-capacity anodes for rechargeable lithium-ion batteries.
    Ji L; Toprakci O; Alcoutlabi M; Yao Y; Li Y; Zhang S; Guo B; Lin Z; Zhang X
    ACS Appl Mater Interfaces; 2012 May; 4(5):2672-9. PubMed ID: 22524417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-pot synthesis of Fe2O3 yolk-shell particles with two, three, and four shells for application as an anode material in lithium-ion batteries.
    Son MY; Hong YJ; Lee JK; Chan Kang Y
    Nanoscale; 2013 Dec; 5(23):11592-7. PubMed ID: 24122066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-performance supercapacitor and lithium-ion battery based on 3D hierarchical NH4F-induced nickel cobaltate nanosheet-nanowire cluster arrays as self-supported electrodes.
    Chen Y; Qu B; Hu L; Xu Z; Li Q; Wang T
    Nanoscale; 2013 Oct; 5(20):9812-20. PubMed ID: 23969779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced lithium storage in Fe2O3-SnO2-C nanocomposite anode with a breathable structure.
    Rahman MM; Glushenkov AM; Ramireddy T; Tao T; Chen Y
    Nanoscale; 2013 Jun; 5(11):4910-6. PubMed ID: 23624706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Instant gelation synthesis of 3D porous MoS2@C nanocomposites for lithium ion batteries.
    Fei L; Xu Y; Wu X; Chen G; Li Y; Li B; Deng S; Smirnov S; Fan H; Luo H
    Nanoscale; 2014 Apr; 6(7):3664-9. PubMed ID: 24567121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quasiemulsion-templated formation of α-Fe2O3 hollow spheres with enhanced lithium storage properties.
    Wang B; Chen JS; Wu HB; Wang Z; Lou XW
    J Am Chem Soc; 2011 Nov; 133(43):17146-8. PubMed ID: 21977903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interconnected MoO2 nanocrystals with carbon nanocoating as high-capacity anode materials for lithium-ion batteries.
    Zhou L; Wu HB; Wang Z; Lou XW
    ACS Appl Mater Interfaces; 2011 Dec; 3(12):4853-7. PubMed ID: 22077330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Building one-dimensional oxide nanostructure arrays on conductive metal substrates for lithium-ion battery anodes.
    Jiang J; Li Y; Liu J; Huang X
    Nanoscale; 2011 Jan; 3(1):45-58. PubMed ID: 20978657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dopamine as the coating agent and carbon precursor for the fabrication of N-doped carbon coated Fe3O4 composites as superior lithium ion anodes.
    Lei C; Han F; Li D; Li WC; Sun Q; Zhang XQ; Lu AH
    Nanoscale; 2013 Feb; 5(3):1168-75. PubMed ID: 23292140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ordered mesoporous α-Fe2O3 (hematite) thin-film electrodes for application in high rate rechargeable lithium batteries.
    Brezesinski K; Haetge J; Wang J; Mascotto S; Reitz C; Rein A; Tolbert SH; Perlich J; Dunn B; Brezesinski T
    Small; 2011 Feb; 7(3):407-14. PubMed ID: 21294271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vapor-phase fabrication of β-iron oxide nanopyramids for lithium-ion battery anodes.
    Carraro G; Barreca D; Cruz-Yusta M; Gasparotto A; Maccato C; Morales J; Sada C; Sánchez L
    Chemphyschem; 2012 Dec; 13(17):3798-801. PubMed ID: 23097215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A graphene-amorphous FePO4 hollow nanosphere hybrid as a cathode material for lithium ion batteries.
    Yin Y; Hu Y; Wu P; Zhang H; Cai C
    Chem Commun (Camb); 2012 Feb; 48(15):2137-9. PubMed ID: 22245812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cu doped V2O5 flowers as cathode material for high-performance lithium ion batteries.
    Yu H; Rui X; Tan H; Chen J; Huang X; Xu C; Liu W; Yu DY; Hng HH; Hoster HE; Yan Q
    Nanoscale; 2013 Jun; 5(11):4937-43. PubMed ID: 23629762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-scale fabrication of graphene-wrapped FeF3 nanocrystals as cathode materials for lithium ion batteries.
    Ma R; Lu Z; Wang C; Wang HE; Yang S; Xi L; Chung JC
    Nanoscale; 2013 Jul; 5(14):6338-43. PubMed ID: 23760208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solution-grown germanium nanowire anodes for lithium-ion batteries.
    Chockla AM; Klavetter KC; Mullins CB; Korgel BA
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4658-64. PubMed ID: 22894797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High rate capability of hydrogen annealed iron oxide-single walled carbon nanotube hybrid films for lithium-ion batteries.
    Cao Z; Wei B
    ACS Appl Mater Interfaces; 2013 Oct; 5(20):10246-52. PubMed ID: 24044985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrothermal synthesis and electrochemical properties of Li₃V₂(PO₄)₃/C-based composites for lithium-ion batteries.
    Sun C; Rajasekhara S; Dong Y; Goodenough JB
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3772-6. PubMed ID: 21877744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembly of hierarchical star-like Co3O4 micro/nanostructures and their application in lithium ion batteries.
    Li L; Seng KH; Chen Z; Guo Z; Liu HK
    Nanoscale; 2013 Mar; 5(5):1922-8. PubMed ID: 23354317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.