These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 225621)

  • 41. Phospholamban: a regulatory protein of the cardiac sarcoplasmic reticulum.
    Kirchberber MA; Tada M; Katz AM
    Recent Adv Stud Cardiac Struct Metab; 1975; 5():103-15. PubMed ID: 127351
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Palmitylcarnitine inhibition of the calcium pump in cardiac sarcoplasmic reticulum: a possible role in myocardial ischemia.
    Pitts BJ; Tate CA; Van Winkle WB; Wood JM; Entman ML
    Life Sci; 1978 Jul; 23(4):391-401. PubMed ID: 211361
    [No Abstract]   [Full Text] [Related]  

  • 43. Effect of myocardial protein kinase modulator on adenosine 3' : 5'-monophosphate-dependent protein kinase-induced stimulation of calcium transport by cardiac sarcoplasmic reticulum.
    Tada M; Ohmori F; Nimura Y; Abe H
    J Biochem; 1977 Sep; 82(3):885-92. PubMed ID: 199585
    [No Abstract]   [Full Text] [Related]  

  • 44. Significance of the membrane protein phospholamban in cyclic AMP-mediated regulation of calcium transport by sarcoplasmic reticulum.
    Tada M; Kirchberger MA
    Recent Adv Stud Cardiac Struct Metab; 1976 May 26-29; 11():265-72. PubMed ID: 201984
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sarcoplasmic reticular Ca2+-pump adaptation in cardiac hypertrophy due to pressure overload in pigs.
    Dhalla NS; Alto LE; Heyliger CE; Pierce GN; Panagia V; Singal PK
    Eur Heart J; 1984 Dec; 5 Suppl F():323-8. PubMed ID: 6152423
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Factors affecting calcium transport by cardiac sarcoplasmic reticulum.
    Pretorius PJ; Malan NT
    Recent Adv Stud Cardiac Struct Metab; 1974; 4():461-71. PubMed ID: 4377616
    [No Abstract]   [Full Text] [Related]  

  • 47. Phosphorylation-dephosphorylation of cardiac microsomes: a possible mechanism for control of calcium uptake by cyclic AMP.
    La Raia PJ; Morkin E
    Recent Adv Stud Cardiac Struct Metab; 1974; 4():417-26. PubMed ID: 4377614
    [No Abstract]   [Full Text] [Related]  

  • 48. Calcium transport by intracellular membrane structures in the myocardium of hypertrophied and failing hearts.
    Fizel A; Turcáni M; Fizeliová A; Maasová D; Simko F
    Cor Vasa; 1986; 28(5):373-83. PubMed ID: 2947779
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Participation of intracellular membrane systems of the myocardium in the development of cardiac hypertrophy (author's transl)].
    Fízel' A; Turcáni M; Fízel'ová A; Krizko J; Divéky L; Maasová D
    Bratisl Lek Listy; 1981 Jan; 75(1):10-5. PubMed ID: 6452190
    [No Abstract]   [Full Text] [Related]  

  • 50. [Cause of increase in the efficiency of Ca2+ transport by fragments of sarcoplasmic reticulum from fast skeletal muscles induced by protein kinase].
    Avakian EA; Ritov VB; Kozlov IuP
    Biokhimiia; 1980 Apr; 45(4):601-8. PubMed ID: 6246973
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Calmodulin-dependent elevation of calcium transport associated with calmodulin-dependent phosphorylation in cardiac sarcoplasmic reticulum.
    Plank B; Wyskovsky W; Hellmann G; Suko J
    Biochim Biophys Acta; 1983 Jul; 732(1):99-109. PubMed ID: 6307368
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evidence for an endogenous protein inhibitor of sarcoplasmic reticulum calcium pump in heart muscle.
    Narayanan N; Lee P; Newland M; Khandelwal RL
    Biochem Biophys Res Commun; 1982 Oct; 108(3):1158-64. PubMed ID: 6817750
    [No Abstract]   [Full Text] [Related]  

  • 53. A tale of two leaks.
    Venetucci L; Sankaranarayanan R; Eisner DA
    Circulation; 2013 Aug; 128(9):941-3. PubMed ID: 23877258
    [No Abstract]   [Full Text] [Related]  

  • 54. [Phosphorylation and stability to proteolysis of calcium transport in the cardiac sarcoplasmic reticulum].
    Skvortsova GP; Antipenko AE; Lyzlova SN
    Dokl Akad Nauk SSSR; 1988; 299(1):243-6. PubMed ID: 2837382
    [No Abstract]   [Full Text] [Related]  

  • 55. Several biochemical characteristics of the cardiomyopathic Syrian hamster.
    Schwartz A; Sordahl A; Crow CA; McCollum WB; Harigaya S; Bajusz E
    Recent Adv Stud Cardiac Struct Metab; 1972; 1():235-42. PubMed ID: 4283438
    [No Abstract]   [Full Text] [Related]  

  • 56. Relaxing and inotropic effects of cyclic AMP on skinned cardiac cells.
    Fabiato A; Fabiato F
    Nature; 1975 Feb; 253(5492):556-8. PubMed ID: 163977
    [No Abstract]   [Full Text] [Related]  

  • 57. Determination of calcium transport and phosphoprotein phosphatase activity in microsomes from respiratory and vascular smooth muscle.
    Sands H; Mascali J; Paietta E
    Biochim Biophys Acta; 1977 Dec; 500(2):223-34. PubMed ID: 201293
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The effect of cyclic nucleotides and protein phosphorylation on calcium permeability and binding in the sarcoplasmic reticulum.
    Weller M; Laing W
    Biochim Biophys Acta; 1979 Mar; 551(2):406-19. PubMed ID: 217433
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cytochemical studies on sarcoplasmic reticulum of heart and skeletal muscle.
    Agostini B; Suko J; Hasselbach W
    Recent Adv Stud Cardiac Struct Metab; 1975; 5():125-31. PubMed ID: 1188149
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The role of cyclic AMP in the modulation of cardiac contractility.
    Entman ML
    Adv Cyclic Nucleotide Res; 1974; 4(0):163-93. PubMed ID: 4369353
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.