These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
370 related articles for article (PubMed ID: 22562167)
1. Preferential and rapid degradation of raw rice starch by an α-amylase of glycoside hydrolase subfamily GH13_37. Lei Y; Peng H; Wang Y; Liu Y; Han F; Xiao Y; Gao Y Appl Microbiol Biotechnol; 2012 Jun; 94(6):1577-84. PubMed ID: 22562167 [TBL] [Abstract][Full Text] [Related]
2. Efficient Hydrolysis of Raw Microalgae Starch by an α-Amylase (AmyP) of Glycoside Hydrolase Subfamily GH13_37. Peng H; Zhai L; Xu S; Xu P; He C; Xiao Y; Gao Y J Agric Food Chem; 2018 Dec; 66(48):12748-12755. PubMed ID: 30441891 [TBL] [Abstract][Full Text] [Related]
3. Extensive hydrolysis of raw rice starch by a chimeric α-amylase engineered with α-amylase (AmyP) and a starch-binding domain from Cryptococcus sp. S-2. Peng H; Li R; Li F; Zhai L; Zhang X; Xiao Y; Gao Y Appl Microbiol Biotechnol; 2018 Jan; 102(2):743-750. PubMed ID: 29159586 [TBL] [Abstract][Full Text] [Related]
4. Crystal structure of a raw-starch-degrading bacterial α-amylase belonging to subfamily 37 of the glycoside hydrolase family GH13. Liu Y; Yu J; Li F; Peng H; Zhang X; Xiao Y; He C Sci Rep; 2017 Mar; 7():44067. PubMed ID: 28303907 [TBL] [Abstract][Full Text] [Related]
5. A starch-binding domain identified in α-amylase (AmyP) represents a new family of carbohydrate-binding modules that contribute to enzymatic hydrolysis of soluble starch. Peng H; Zheng Y; Chen M; Wang Y; Xiao Y; Gao Y FEBS Lett; 2014 Apr; 588(7):1161-7. PubMed ID: 24613924 [TBL] [Abstract][Full Text] [Related]
6. Production and properties of alpha-amylase from Penicillium chrysogenum and its application in starch hydrolysis. Balkan B; Ertan F Prep Biochem Biotechnol; 2005; 35(2):169-78. PubMed ID: 15881598 [TBL] [Abstract][Full Text] [Related]
7. Purification, crystallization and preliminary crystallographic analysis of the marine α-amylase AmyP. Yu J; Wang C; Hu Y; Dong Y; Wang Y; Tu X; Peng H; Zhang X Acta Crystallogr Sect F Struct Biol Cryst Commun; 2013 Mar; 69(Pt 3):263-6. PubMed ID: 23519800 [TBL] [Abstract][Full Text] [Related]
8. Porcine pancreatic alpha-amylase hydrolysis of native starch granules as a function of granule surface area. Kong BW; Kim JI; Kim MJ; Kim JC Biotechnol Prog; 2003; 19(4):1162-6. PubMed ID: 12892477 [TBL] [Abstract][Full Text] [Related]
9. Impact of α-amylase combined with hydrochloric acid hydrolysis on structure and digestion of waxy rice starch. Li H; Zhu Y; Jiao A; Zhao J; Chen X; Wei B; Hu X; Wu C; Jin Z; Tian Y Int J Biol Macromol; 2013 Apr; 55():276-81. PubMed ID: 23357798 [TBL] [Abstract][Full Text] [Related]
10. Structural basis for the recognition of α-1,6-branched α-glucan by GH13_47 α-amylase from Rhodothermus marinus. Miyasaka Y; Yokoyama K; Kozono T; Kitano Y; Miyazaki T; Sakaguchi M; Nishikawa A; Tonozuka T Proteins; 2024 Aug; 92(8):984-997. PubMed ID: 38641972 [TBL] [Abstract][Full Text] [Related]
11. Purification, characterization, and partial primary sequence of a major-maltotriose-producing alpha-amylase, ScAmy43, from Sclerotinia sclerotiorum. Ben Abdelmalek-Khedher I; Urdaci MC; Limam F; Schmitter JM; Marzouki MN; Bressollier P J Microbiol Biotechnol; 2008 Sep; 18(9):1555-63. PubMed ID: 18852512 [TBL] [Abstract][Full Text] [Related]
12. Purification and characterization of novel raw-starch-digesting and cold-adapted alpha-amylases from Eisenia foetida. Ueda M; Asano T; Nakazawa M; Miyatake K; Inouye K Comp Biochem Physiol B Biochem Mol Biol; 2008 May; 150(1):125-30. PubMed ID: 18375163 [TBL] [Abstract][Full Text] [Related]
13. Recombinant expression and characterization of an organic-solvent-tolerant α-amylase from Exiguobacterium sp. DAU5. Chang J; Lee YS; Fang SJ; Park IH; Choi YL Appl Biochem Biotechnol; 2013 Mar; 169(6):1870-83. PubMed ID: 23344941 [TBL] [Abstract][Full Text] [Related]
14. In depth study of a new highly efficient raw starch hydrolyzing α-amylase from Rhizomucor sp. Tawil G; Viksø-Nielsen A; Rolland-Sabaté A; Colonna P; Buléon A Biomacromolecules; 2011 Jan; 12(1):34-42. PubMed ID: 21158480 [TBL] [Abstract][Full Text] [Related]
15. Exploring a novel GH13_5 α-amylase from Jeotgalibacillus malaysiensis D5 Radzlin N; Mohamad Ali MS; Goh KM; Yaakop AS; Zakaria II; Kahar UM AMB Express; 2024 Jun; 14(1):71. PubMed ID: 38874807 [TBL] [Abstract][Full Text] [Related]
17. Modification of rice starch by selective degradation of amylose using alkalophilic Bacillus cyclomaltodextrinase. Auh JH; Chae HY; Kim YR; Shim KH; Yoo SH; Park KH J Agric Food Chem; 2006 Mar; 54(6):2314-9. PubMed ID: 16536613 [TBL] [Abstract][Full Text] [Related]
18. Introduction of novel thermostable α-amylases from genus Anoxybacillus and proposing to group the Bacillaceae related α-amylases under five individual GH13 subfamilies. Cihan AC; Yildiz ED; Sahin E; Mutlu O World J Microbiol Biotechnol; 2018 Jun; 34(7):95. PubMed ID: 29904894 [TBL] [Abstract][Full Text] [Related]
19. Purification and characterization of a thermostable α-amylase produced by the fungus Paecilomyces variotii. Michelin M; Silva TM; Benassi VM; Peixoto-Nogueira SC; Moraes LA; Leão JM; Jorge JA; Terenzi HF; Polizeli Mde L Carbohydr Res; 2010 Nov; 345(16):2348-53. PubMed ID: 20850111 [TBL] [Abstract][Full Text] [Related]
20. Novel Maltogenic Amylase CoMA from Corallococcus sp. Strain EGB Catalyzes the Conversion of Maltooligosaccharides and Soluble Starch to Maltose. Zhou J; Li Z; Zhang H; Wu J; Ye X; Dong W; Jiang M; Huang Y; Cui Z Appl Environ Microbiol; 2018 Jul; 84(14):. PubMed ID: 29752267 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]