BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 2256230)

  • 1. Transducer characterization from pressure amplitude distribution measurements using a Kalman filter as parameter estimation algorithm.
    Linssen FM; Hoeks AP
    Ultrason Imaging; 1990 Oct; 12(4):309-23. PubMed ID: 2256230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parametric study of the peak negative acoustic pressure distribution within the image plane of a phased array transducer.
    D'hooge J; Schrooten M; Bijnens B; Thoen J; Van de Werf F; Sutherland G; Suetens P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Jul; 48(4):1092-102. PubMed ID: 11477768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of the surface normal velocity of high frequency ultrasound transducers.
    Rupitsch SJ; Kindermann S; Zagar BG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jan; 55(1):225-35. PubMed ID: 18334328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of acoustic emitted field of transducer array for ultrasound imaging.
    He Z
    Biomed Mater Eng; 2014; 24(1):1201-8. PubMed ID: 24212014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Minimum radiation force target size for power measurements in focused ultrasonic fields with circular symmetry.
    Beissner K
    J Acoust Soc Am; 2010 Dec; 128(6):3355-62. PubMed ID: 21218869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A model for the propagation and scattering of ultrasound in tissue.
    Jensen JA
    J Acoust Soc Am; 1991 Jan; 89(1):182-90. PubMed ID: 2002167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Angular spectrum method and ray algorithm for the acoustic field of a focusing transducer in an anisotropic solid.
    Every AG; Amulele GM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Mar; 49(3):307-18. PubMed ID: 12322879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating acoustic peak pressure generated by ultrasound transducers from harmonic distortion level measurement.
    Matte GM; Borsboom JM; van Neer P; de Jong N
    Ultrasound Med Biol; 2008 Sep; 34(9):1528-32. PubMed ID: 18450363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iterative reconstruction of the transducer surface velocity.
    Alles E; van Dongen K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 May; 60(5):954-62. PubMed ID: 23661129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arbitrary shaped, liquid filled reverberators with non-resonant transducers for broadband focusing of ultrasound using Time Reversed Acoustics.
    Sarvazyan A; Fillinger L
    Ultrasonics; 2009 Mar; 49(3):301-5. PubMed ID: 19062060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Errors in ultrasonic scatterer size estimates due to phase and amplitude aberration.
    Gerig A; Zagzebski J
    J Acoust Soc Am; 2004 Jun; 115(6):3244-52. PubMed ID: 15237849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3-D numerical modeling for axisymmetrical piezoelectric structures: application to high-frequency ultrasonic transducers.
    Filoux E; Callé S; Lou-Moeller R; Lethiecq M; Levassort F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 May; 57(5):1188-99. PubMed ID: 20442031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mathematical simulation of pressure pulse propagation in biological tissues.
    Adrov VN; Chernomordik VV
    Ultrason Imaging; 1993 Jan; 15(1):59-71. PubMed ID: 8328120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of in situ exposure to ultrasound: an acoustical attenuation method.
    Preston RC; Shaw A; Zeqiri B
    Ultrasound Med Biol; 1991; 17(4):317-32. PubMed ID: 1949344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a miniaturized piezoelectric ultrasonic transducer.
    Li T; Chen Y; Ma J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Mar; 56(3):649-59. PubMed ID: 19411223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of two theoretical models for predicting non-linear propagation in medical ultrasound fields.
    Bacon DR; Baker AC
    Phys Med Biol; 1989 Nov; 34(11):1633-43. PubMed ID: 2685835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-domain modeling of nonlinear distortion of pulsed finite amplitude sound beams.
    Remenieras JP; Bou Matar O; Labat V; Patat F
    Ultrasonics; 2000 Mar; 38(1-8):305-11. PubMed ID: 10829679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of a fiber-optic displacement sensor for measurements in high-intensity focused ultrasound fields.
    Haller J; Wilkens V; Jenderka KV; Koch C
    J Acoust Soc Am; 2011 Jun; 129(6):3676-81. PubMed ID: 21682392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A continuous-wave ultrasound system for displacement amplitude and phase measurement.
    Finneran JJ; Hastings MC
    J Acoust Soc Am; 2004 Jun; 115(6):3202-9. PubMed ID: 15237844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasound pressure distributions generated by high frequency transducers in large reactors.
    Leong T; Coventry M; Swiergon P; Knoerzer K; Juliano P
    Ultrason Sonochem; 2015 Nov; 27():22-29. PubMed ID: 26186816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.