These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 22562369)

  • 1. The effect of microvascular pattern alterations on network resistance in spontaneously hypertensive rats.
    Yang M; Murfee WL
    Med Biol Eng Comput; 2012 Jun; 50(6):585-93. PubMed ID: 22562369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chapter 12. Structure of microvascular networks in genetic hypertension.
    Murfee WL; Schmid-Schönbein GW
    Methods Enzymol; 2008; 444():271-84. PubMed ID: 19007669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A functional morphometric study of the cremaster muscle microcirculation in young spontaneously hypertensive rats.
    le Noble JL; Tangelder GJ; Slaaf DW; van Essen H; Reneman RS; Struyker-Boudier HA
    J Hypertens; 1990 Aug; 8(8):741-8. PubMed ID: 2170514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Matrix metalloproteinase activity causes VEGFR-2 cleavage and microvascular rarefaction in rat mesentery.
    Tran ED; Yang M; Chen A; Delano FA; Murfee WL; Schmid-Schönbein GW
    Microcirculation; 2011 Apr; 18(3):228-37. PubMed ID: 21418372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Angiogenesis in mesenteric microvascular networks from spontaneously hypertensive versus normotensive rats.
    Yang M; Aragon M; Murfee WL
    Microcirculation; 2011 Oct; 18(7):574-82. PubMed ID: 21627712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of the cutaneous microvascular properties of the spontaneously hypertensive rat and the Wistar-Kyoto rat.
    Rendell MS; Finnegan MF; Pisarri T; Healy JC; Lind A; Milliken BK; Finney DE; Bonner RF
    Comp Biochem Physiol A Mol Integr Physiol; 1999 Apr; 122(4):399-406. PubMed ID: 10422258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and functional alterations of mesenteric vascular beds in spontaneously hypertensive rats.
    Inoue T; Masuda T; Kishi K
    Jpn Heart J; 1990 May; 31(3):393-403. PubMed ID: 2214138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of the microvascular response in the healing wound in the spontaneously hypertensive and non-hypertensive rat.
    Rendell MS; Milliken BK; Finnegan MF; Finney DE; Healy JC; Bonner RF
    Int J Surg Investig; 2000; 2(1):17-25. PubMed ID: 12774334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium sensitivity and agonist-induced calcium sensitization in small arteries of young and adult spontaneously hypertensive rats.
    Shaw LM; Ohanian J; Heagerty AM
    Hypertension; 1997 Sep; 30(3 Pt 1):442-8. PubMed ID: 9314430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Life and death cell labeling in the microcirculation of the spontaneously hypertensive rat.
    Lim HH; DeLano FA; Schmid-Schönbein GW
    J Vasc Res; 2001; 38(3):228-36. PubMed ID: 11399895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microvascular adaptation in the cerebral cortex of adult spontaneously hypertensive rats.
    Harper SL; Bohlen HG
    Hypertension; 1984; 6(3):408-19. PubMed ID: 6735460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow pulsation and network structure in mesenteric microvasculature of rats.
    Seki J
    Am J Physiol; 1994 Feb; 266(2 Pt 2):H811-21. PubMed ID: 8141382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microvascular pressure, flow, and resistance in spontaneously hypertensive rats.
    Roy JW; Mayrovitz HN
    Hypertension; 1984; 6(6 Pt 1):877-86. PubMed ID: 6519744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intestinal microvascular adaptation during maturation of spontaneously hypertensive rats.
    Bohlen HG
    Hypertension; 1983; 5(5):739-45. PubMed ID: 6618636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The elastic modulus of conductance coronary arteries from spontaneously hypertensive rats is increased.
    Pourageaud F; Crabos M; Freslon JL
    J Hypertens; 1997 Oct; 15(10):1113-21. PubMed ID: 9350585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitric oxide-mediated changes in vascular reactivity in pregnancy in spontaneously hypertensive rats.
    Chu ZM; Beilin LJ
    Br J Pharmacol; 1993 Nov; 110(3):1184-8. PubMed ID: 8298807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tissue angiotensin II and endothelin-1 modulate differently the response to flow in mesenteric resistance arteries of normotensive and spontaneously hypertensive rats.
    Matrougui K; Lévy BI; Henrion D
    Br J Pharmacol; 2000 Jun; 130(3):521-6. PubMed ID: 10821779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of oxidative stress in microcirculation of spontaneously hypertensive rats.
    DeLano FA; Balete R; Schmid-Schönbein GW
    Am J Physiol Heart Circ Physiol; 2005 Feb; 288(2):H805-12. PubMed ID: 15650156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitric oxide in mesenteric vascular reactivity: a comparison between rats with normotension and hypertension.
    Chang HR; Lee RP; Wu CY; Chen HI
    Clin Exp Pharmacol Physiol; 2002 Apr; 29(4):275-80. PubMed ID: 11985535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decreases in splanchnic vascular resistance contribute to hypotensive effects of L-serine in hypertensive rats.
    Mishra RC; Tripathy S; Gandhi JD; Balsevich J; Akhtar J; Desai KM; Gopalakrishnan V
    Am J Physiol Heart Circ Physiol; 2010 Jun; 298(6):H1789-96. PubMed ID: 20348218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.