These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 22562623)

  • 1. Epidemic models with uncertainty in the reproduction number.
    Roberts MG
    J Math Biol; 2013 Jun; 66(7):1463-74. PubMed ID: 22562623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epidemic modelling: aspects where stochasticity matters.
    Britton T; Lindenstrand D
    Math Biosci; 2009 Dec; 222(2):109-16. PubMed ID: 19837097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Delayed epidemic peak caused by infection and recovery rate fluctuations.
    Arutkin M; Faranda D; Alberti T; Vallée A
    Chaos; 2021 Oct; 31(10):101107. PubMed ID: 34717319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early estimation of the reproduction number in the presence of imported cases: pandemic influenza H1N1-2009 in New Zealand.
    Roberts MG; Nishiura H
    PLoS One; 2011; 6(5):e17835. PubMed ID: 21637342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The relationships between message passing, pairwise, Kermack-McKendrick and stochastic SIR epidemic models.
    Wilkinson RR; Ball FG; Sharkey KJ
    J Math Biol; 2017 Dec; 75(6-7):1563-1590. PubMed ID: 28409223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved estimation of time-varying reproduction numbers at low case incidence and between epidemic waves.
    Parag KV
    PLoS Comput Biol; 2021 Sep; 17(9):e1009347. PubMed ID: 34492011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time forecasting of an epidemic using a discrete time stochastic model: a case study of pandemic influenza (H1N1-2009).
    Nishiura H
    Biomed Eng Online; 2011 Feb; 10():15. PubMed ID: 21324153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling the initial phase of an epidemic using incidence and infection network data: 2009 H1N1 pandemic in Israel as a case study.
    Katriel G; Yaari R; Huppert A; Roll U; Stone L
    J R Soc Interface; 2011 Jun; 8(59):856-67. PubMed ID: 21247949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the estimation of the reproduction number based on misreported epidemic data.
    Azmon A; Faes C; Hens N
    Stat Med; 2014 Mar; 33(7):1176-92. PubMed ID: 24122943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of the reproduction number of influenza A(H1N1)pdm09 in South Korea using heterogeneous models.
    Lee Y; Lee DH; Kwon HD; Kim C; Lee J
    BMC Infect Dis; 2021 Jul; 21(1):658. PubMed ID: 34233622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling and analysis of influenza A (H1N1) on networks.
    Jin Z; Zhang J; Song LP; Sun GQ; Kan J; Zhu H
    BMC Public Health; 2011 Feb; 11 Suppl 1(Suppl 1):S9. PubMed ID: 21356138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pros and cons of estimating the reproduction number from early epidemic growth rate of influenza A (H1N1) 2009.
    Nishiura H; Chowell G; Safan M; Castillo-Chavez C
    Theor Biol Med Model; 2010 Jan; 7():1. PubMed ID: 20056004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative estimation of the reproduction number for pandemic influenza from daily case notification data.
    Chowell G; Nishiura H; Bettencourt LM
    J R Soc Interface; 2007 Feb; 4(12):155-66. PubMed ID: 17254982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling under-reporting in epidemics.
    Gamado KM; Streftaris G; Zachary S
    J Math Biol; 2014 Sep; 69(3):737-65. PubMed ID: 23942791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contact intervals, survival analysis of epidemic data, and estimation of R(0).
    Kenah E
    Biostatistics; 2011 Jul; 12(3):548-66. PubMed ID: 21071607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seasonal transmission potential and activity peaks of the new influenza A(H1N1): a Monte Carlo likelihood analysis based on human mobility.
    Balcan D; Hu H; Goncalves B; Bajardi P; Poletto C; Ramasco JJ; Paolotti D; Perra N; Tizzoni M; Van den Broeck W; Colizza V; Vespignani A
    BMC Med; 2009 Sep; 7():45. PubMed ID: 19744314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genealogy with seasonality, the basic reproduction number, and the influenza pandemic.
    Bacaër N; Ait Dads el H
    J Math Biol; 2011 May; 62(5):741-62. PubMed ID: 20607242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of assumptions on generation time distributions in epidemic models.
    Svensson Å
    Math Biosci; 2015 Dec; 270(Pt A):81-9. PubMed ID: 26477379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequential detection of influenza epidemics by the Kolmogorov-Smirnov test.
    Closas P; Coma E; Méndez L
    BMC Med Inform Decis Mak; 2012 Oct; 12():112. PubMed ID: 23031321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Edge-based epidemic spreading in degree-correlated complex networks.
    Wang Y; Ma J; Cao J; Li L
    J Theor Biol; 2018 Oct; 454():164-181. PubMed ID: 29885412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.