BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 22562705)

  • 21. RNase A ribonucleases and host defense: an evolving story.
    Rosenberg HF
    J Leukoc Biol; 2008 May; 83(5):1079-87. PubMed ID: 18211964
    [TBL] [Abstract][Full Text] [Related]  

  • 22. RNase9, an androgen-dependent member of the RNase A family, is specifically expressed in the rat epididymis.
    Zhu CF; Liu Q; Zhang L; Yuan HX; Zhen W; Zhang JS; Chen ZJ; Hall SH; French FS; Zhang YL
    Biol Reprod; 2007 Jan; 76(1):63-73. PubMed ID: 17005942
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of a non-S RNase, a possible ancestral form of S-RNases, in Prunus.
    Yamane H; Tao R; Mori H; Sugiura A
    Mol Genet Genomics; 2003 Apr; 269(1):90-100. PubMed ID: 12715157
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rapid diversification of RNase A superfamily ribonucleases from the bullfrog, Rana catesbeiana.
    Rosenberg HF; Zhang J; Liao YD; Dyer KD
    J Mol Evol; 2001 Jul; 53(1):31-8. PubMed ID: 11683320
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Insights into the Prunus-Specific S-RNase-Based Self-Incompatibility System from a Genome-Wide Analysis of the Evolutionary Radiation of S Locus-Related F-box Genes.
    Akagi T; Henry IM; Morimoto T; Tao R
    Plant Cell Physiol; 2016 Jun; 57(6):1281-94. PubMed ID: 27081098
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Residues 36-42 of liver RNase PL3 contribute to its uridine-preferring substrate specificity. Cloning of the cDNA and site-directed mutagenesis studies.
    Vicentini AM; Hemmings BA; Hofsteenge J
    Protein Sci; 1994 Mar; 3(3):459-66. PubMed ID: 8019417
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Expansion of the Bactericidal/Permeability Increasing-like (BPI-like) protein locus in cattle.
    Wheeler TT; Hood KA; Maqbool NJ; McEwan JC; Bingle CD; Zhao S
    BMC Genomics; 2007 Mar; 8():75. PubMed ID: 17362520
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Zebrafish RNase T2 genes and the evolution of secretory ribonucleases in animals.
    Hillwig MS; Rizhsky L; Wang Y; Umanskaya A; Essner JJ; MacIntosh GC
    BMC Evol Biol; 2009 Jul; 9():170. PubMed ID: 19619322
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cytosolic RNase inhibitor only affects RNases with intrinsic cytotoxicity.
    Monti DM; D'Alessio G
    J Biol Chem; 2004 Sep; 279(38):39195-8. PubMed ID: 15277533
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of a ribonuclease gene and encoded protein from the reptile, Iguana iguana.
    Nitto T; Lin C; Dyer KD; Wagner RA; Rosenberg HF
    Gene; 2005 Jun; 352():36-44. PubMed ID: 15893436
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Structures and functions of ribonucleases].
    Irie M
    Yakugaku Zasshi; 1997 Sep; 117(9):561-82. PubMed ID: 9357326
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tandemization endows bovine pancreatic ribonuclease with cytotoxic activity.
    Leich F; Köditz J; Ulbrich-Hofman R; Arnold U
    J Mol Biol; 2006 May; 358(5):1305-13. PubMed ID: 16580680
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multiple ribonuclease H-encoding genes in the Caenorhabditis elegans genome contrasts with the two typical ribonuclease H-encoding genes in the human genome.
    Arudchandran A; Cerritelli SM; Bowen NJ; Chen X; Krause MW; Crouch RJ
    Mol Biol Evol; 2002 Nov; 19(11):1910-9. PubMed ID: 12411600
    [TBL] [Abstract][Full Text] [Related]  

  • 34. RNase 3 (ECP) is an extraordinarily stable protein among human pancreatic-type RNases.
    Maeda T; Mahara K; Kitazoe M; Futami J; Takidani A; Kosaka M; Tada H; Seno M; Yamada H
    J Biochem; 2002 Nov; 132(5):737-42. PubMed ID: 12417023
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Single-strand-preferring RNases degrade double-stranded RNAs by destabilizing its secondary structure.
    Yakovlev G; Moiseyev GP; Sorrentino S; De Prisco R; Libonati M
    J Biomol Struct Dyn; 1997 Oct; 15(2):243-50. PubMed ID: 9399152
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Degradation of double-stranded RNA by human pancreatic ribonuclease: crucial role of noncatalytic basic amino acid residues.
    Sorrentino S; Naddeo M; Russo A; D'Alessio G
    Biochemistry; 2003 Sep; 42(34):10182-90. PubMed ID: 12939146
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inclusion of cetaceans within the order Artiodactyla based on phylogenetic analysis of pancreatic ribonuclease genes.
    Kleineidam RG; Pesole G; Breukelman HJ; Beintema JJ; Kastelein RA
    J Mol Evol; 1999 Mar; 48(3):360-8. PubMed ID: 10093226
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The bovine lactation genome: insights into the evolution of mammalian milk.
    Lemay DG; Lynn DJ; Martin WF; Neville MC; Casey TM; Rincon G; Kriventseva EV; Barris WC; Hinrichs AS; Molenaar AJ; Pollard KS; Maqbool NJ; Singh K; Murney R; Zdobnov EM; Tellam RL; Medrano JF; German JB; Rijnkels M
    Genome Biol; 2009; 10(4):R43. PubMed ID: 19393040
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sequence, structural and expression divergence of duplicate genes in the bovine genome.
    Liao X; Bao H; Meng Y; Plastow G; Moore S; Stothard P
    PLoS One; 2014; 9(7):e102868. PubMed ID: 25054921
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Parallel functional changes in the digestive RNases of ruminants and colobines by divergent amino acid substitutions.
    Zhang J
    Mol Biol Evol; 2003 Aug; 20(8):1310-7. PubMed ID: 12777504
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.