These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 22562725)

  • 1. Equation environment coupling and interference on the electric-field intrabody communication channel.
    Xu R; Ng WC; Zhu H; Shan H; Yuan J
    IEEE Trans Biomed Eng; 2012 Jul; 59(7):2051-9. PubMed ID: 22562725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electric-field intrabody communication channel modeling with finite-element method.
    Xu R; Zhu H; Yuan J
    IEEE Trans Biomed Eng; 2011 Mar; 58(3):705-12. PubMed ID: 21095853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A survey on intrabody communications for body area network applications.
    Seyedi M; Kibret B; Lai DT; Faulkner M
    IEEE Trans Biomed Eng; 2013 Aug; 60(8):2067-79. PubMed ID: 23542945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quasi-static modeling of human limb for intra-body communications with experiments.
    Pun SH; Gao YM; Mak P; Vai MI; Du M
    IEEE Trans Inf Technol Biomed; 2011 Nov; 15(6):870-6. PubMed ID: 21724520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distributed circuit modeling of galvanic and capacitive coupling for intrabody communication.
    Callejón MA; Naranjo-Hernández D; Reina-Tosina J; Roa LM
    IEEE Trans Biomed Eng; 2012 Nov; 59(11):3263-9. PubMed ID: 22736633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A study on intrabody communication for personal healthcare monitoring system.
    Alshehab A; Kobayashi N; Ruiz J; Kikuchi R; Shimamoto S; Ishibashi H
    Telemed J E Health; 2008 Oct; 14(8):851-7. PubMed ID: 18954257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High speed intra-body communication for personal health care.
    Zhu H; Xu R; Yuan J
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():709-12. PubMed ID: 19963724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparable Investigation of Characteristics for Implant Intra-Body Communication Based on Galvanic and Capacitive Coupling.
    Li M; Song Y; Hou Y; Li N; Jiang Y; Sulaman M; Hao Q
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1747-1758. PubMed ID: 31514153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of galvanic-coupled intrabody communication using the human body circuit model.
    Kibret B; Seyedi M; Lai DT; Faulkner M
    IEEE J Biomed Health Inform; 2014 Jul; 18(4):1196-206. PubMed ID: 25014932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling for intra-body communication with bone effect.
    Pun SH; Gao YM; Mak PU; Du M; Vai MI
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():693-6. PubMed ID: 19963722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling and Characterization of Capacitive Coupling Intrabody Communication in an In-Vehicle Scenario.
    Xu Y; Huang Z; Yang S; Wang Z; Yang B; Li Y
    Sensors (Basel); 2019 Oct; 19(19):. PubMed ID: 31590254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of attenuation and dispersion through the skin in intrabody communications systems.
    Callejón MA; Roa LM; Reina-Tosina J; Naranjo-Hernández D
    IEEE Trans Inf Technol Biomed; 2012 Jan; 16(1):159-65. PubMed ID: 21997285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developing a wireless implantable body sensor network in MICS band.
    Fang Q; Lee SY; Permana H; Ghorbani K; Cosic I
    IEEE Trans Inf Technol Biomed; 2011 Jul; 15(4):567-76. PubMed ID: 21571615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Energy Efficient Technique Using Electric Active Shielding for Capacitive Coupling Intra-Body Communication.
    Ma C; Huang Z; Wang Z; Zhou L; Li Y
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28885546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wearable wireless multi-parameter sensor module for physiological monitoring.
    Liverud AE; Vedum J; Fleurey F; Seeberg TM
    Stud Health Technol Inform; 2012; 177():210-5. PubMed ID: 22942056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simple electrical model and initial experiments for intra-body communications.
    Gao YM; Pun SH; Du M; Mak PU; Vai MI
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():697-700. PubMed ID: 19963723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An inductively powered implantable blood flow sensor microsystem for vascular grafts.
    Cheong JH; Ng SS; Liu X; Xue RF; Lim HJ; Khannur PB; Chan KL; Lee AA; Kang K; Lim LS; He C; Singh P; Park WT; Je M
    IEEE Trans Biomed Eng; 2012 Sep; 59(9):2466-75. PubMed ID: 22692871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-Cost and Active Control of Radiation of Wearable Medical Health Device for Wireless Body Area Network.
    Jin Y
    J Med Syst; 2019 Apr; 43(5):137. PubMed ID: 30963291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wearable wireless telemetry system for implantable bio-MEMS sensors.
    Simons RN; Miranda FA; Wilson JD; Simons RE
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():6245-8. PubMed ID: 17946365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wireless Body Sensor Communication Systems Based on UWB and IBC Technologies: State-of-the-Art and Open Challenges.
    Čuljak I; Lučev Vasić Ž; Mihaldinec H; Džapo H
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32630376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.