These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 22562727)
21. A class-adaptive spatially variant mixture model for image segmentation. Nikou C; Galatsanos NP; Likas AC IEEE Trans Image Process; 2007 Apr; 16(4):1121-30. PubMed ID: 17405442 [TBL] [Abstract][Full Text] [Related]
22. Phantom-based performance evaluation: application to brain segmentation from magnetic resonance images. Moretti B; Fadili LM; Ruan S; Bloyet N; Mazoyer B Med Image Anal; 2000 Dec; 4(4):303-16. PubMed ID: 11154019 [TBL] [Abstract][Full Text] [Related]
23. Is STAPLE algorithm confident to assess segmentation methods in PET imaging? Dewalle-Vignion AS; Betrouni N; Baillet C; Vermandel M Phys Med Biol; 2015 Dec; 60(24):9473-91. PubMed ID: 26584044 [TBL] [Abstract][Full Text] [Related]
24. Multi-atlas and label fusion approach for patient-specific MRI based skull estimation. Torrado-Carvajal A; Herraiz JL; Hernandez-Tamames JA; San Jose-Estepar R; Eryaman Y; Rozenholc Y; Adalsteinsson E; Wald LL; Malpica N Magn Reson Med; 2016 Apr; 75(4):1797-807. PubMed ID: 25981161 [TBL] [Abstract][Full Text] [Related]
25. Impact of target volume segmentation accuracy and variability on treatment planning for 4D-CT-based non-small cell lung cancer radiotherapy. Martin S; Johnson C; Brophy M; Palma DA; Barron JL; Beauchemin SS; Louie AV; Yu E; Yaremko B; Ahmad B; Rodrigues GB; Gaede S Acta Oncol; 2015 Mar; 54(3):322-32. PubMed ID: 25350526 [TBL] [Abstract][Full Text] [Related]
26. A learning-based wrapper method to correct systematic errors in automatic image segmentation: consistently improved performance in hippocampus, cortex and brain segmentation. Wang H; Das SR; Suh JW; Altinay M; Pluta J; Craige C; Avants B; Yushkevich PA; Neuroimage; 2011 Apr; 55(3):968-85. PubMed ID: 21237273 [TBL] [Abstract][Full Text] [Related]
27. Data-driven brain MRI segmentation supported on edge confidence and a priori tissue information. Jiménez-Alaniz JR; Medina-Bañuelos V; Yáñez-Suárez O IEEE Trans Med Imaging; 2006 Jan; 25(1):74-83. PubMed ID: 16398416 [TBL] [Abstract][Full Text] [Related]
28. Balancing the Role of Priors in Multi-Observer Segmentation Evaluation. Zhu Y; Huang X; Wang W; Lopresti D; Long R; Antani S; Xue Z; Thoma G J Signal Process Syst; 2008 May; 55(1-3):185-207. PubMed ID: 20523759 [TBL] [Abstract][Full Text] [Related]
29. Estimation of the prior distribution of ground truth in the STAPLE algorithm: an empirical Bayesian approach. Akhondi-Asl A; Warfield SK Med Image Comput Comput Assist Interv; 2012; 15(Pt 1):593-600. PubMed ID: 23285600 [TBL] [Abstract][Full Text] [Related]
30. Spatially varying accuracy and reproducibility of prostate segmentation in magnetic resonance images using manual and semiautomated methods. Shahedi M; Cool DW; Romagnoli C; Bauman GS; Bastian-Jordan M; Gibson E; Rodrigues G; Ahmad B; Lock M; Fenster A; Ward AD Med Phys; 2014 Nov; 41(11):113503. PubMed ID: 25370674 [TBL] [Abstract][Full Text] [Related]
31. Non-local STAPLE: an intensity-driven multi-atlas rater model. Asman AJ; Landman BA Med Image Comput Comput Assist Interv; 2012; 15(Pt 3):426-34. PubMed ID: 23286159 [TBL] [Abstract][Full Text] [Related]
32. Robust statistical label fusion through COnsensus Level, Labeler Accuracy, and Truth Estimation (COLLATE). Asman AJ; Landman BA IEEE Trans Med Imaging; 2011 Oct; 30(10):1779-94. PubMed ID: 21536519 [TBL] [Abstract][Full Text] [Related]
33. Level set segmentation of brain magnetic resonance images based on local Gaussian distribution fitting energy. Wang L; Chen Y; Pan X; Hong X; Xia D J Neurosci Methods; 2010 May; 188(2):316-25. PubMed ID: 20230858 [TBL] [Abstract][Full Text] [Related]
34. Superpixel and multi-atlas based fusion entropic model for the segmentation of X-ray images. Nguyen DCT; Benameur S; Mignotte M; Lavoie F Med Image Anal; 2018 Aug; 48():58-74. PubMed ID: 29852311 [TBL] [Abstract][Full Text] [Related]
35. Formulating spatially varying performance in the statistical fusion framework. Asman AJ; Landman BA IEEE Trans Med Imaging; 2012 Jun; 31(6):1326-36. PubMed ID: 22438513 [TBL] [Abstract][Full Text] [Related]
36. A generative model for image segmentation based on label fusion. Sabuncu MR; Yeo BT; Van Leemput K; Fischl B; Golland P IEEE Trans Med Imaging; 2010 Oct; 29(10):1714-29. PubMed ID: 20562040 [TBL] [Abstract][Full Text] [Related]
37. Impact of consensus contours from multiple PET segmentation methods on the accuracy of functional volume delineation. Schaefer A; Vermandel M; Baillet C; Dewalle-Vignion AS; Modzelewski R; Vera P; Massoptier L; Parcq C; Gibon D; Fechter T; Nemer U; Gardin I; Nestle U Eur J Nucl Med Mol Imaging; 2016 May; 43(5):911-924. PubMed ID: 26567163 [TBL] [Abstract][Full Text] [Related]
38. A segmentation-based regularization term for image deconvolution. Mignotte M IEEE Trans Image Process; 2006 Jul; 15(7):1973-84. PubMed ID: 16830917 [TBL] [Abstract][Full Text] [Related]
39. Learning likelihoods for labeling (L3): a general multi-classifier segmentation algorithm. Weisenfeld NI; Warfield SK Med Image Comput Comput Assist Interv; 2011; 14(Pt 3):322-9. PubMed ID: 22003715 [TBL] [Abstract][Full Text] [Related]
40. A multi-objective optimization approach for brain MRI segmentation using fuzzy entropy clustering and region-based active contour methods. Pham TX; Siarry P; Oulhadj H Magn Reson Imaging; 2019 Sep; 61():41-65. PubMed ID: 31108153 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]