BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 22563067)

  • 1. Two effective methods for correcting experimental high-throughput screening data.
    Dragiev P; Nadon R; Makarenkov V
    Bioinformatics; 2012 Jul; 28(13):1775-82. PubMed ID: 22563067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systematic error detection in experimental high-throughput screening.
    Dragiev P; Nadon R; Makarenkov V
    BMC Bioinformatics; 2011 Jan; 12():25. PubMed ID: 21247425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detecting and removing multiplicative spatial bias in high-throughput screening technologies.
    Caraus I; Mazoure B; Nadon R; Makarenkov V
    Bioinformatics; 2017 Oct; 33(20):3258-3267. PubMed ID: 28633418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Automatic Quality Control Pipeline for High-Throughput Screening Hit Identification.
    Zhai Y; Chen K; Zhong Y; Zhou B; Ainscow E; Wu YT; Zhou Y
    J Biomol Screen; 2016 Sep; 21(8):832-41. PubMed ID: 27313114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detecting and overcoming systematic bias in high-throughput screening technologies: a comprehensive review of practical issues and methodological solutions.
    Caraus I; Alsuwailem AA; Nadon R; Makarenkov V
    Brief Bioinform; 2015 Nov; 16(6):974-86. PubMed ID: 25750417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel trends in high-throughput screening.
    Mayr LM; Bojanic D
    Curr Opin Pharmacol; 2009 Oct; 9(5):580-8. PubMed ID: 19775937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HTS-Corrector: software for the statistical analysis and correction of experimental high-throughput screening data.
    Makarenkov V; Kevorkov D; Zentilli P; Gagarin A; Malo N; Nadon R
    Bioinformatics; 2006 Jun; 22(11):1408-9. PubMed ID: 16595559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and Correction of Additive and Multiplicative Spatial Biases in Experimental High-Throughput Screening.
    Mazoure B; Caraus I; Nadon R; Makarenkov V
    SLAS Discov; 2018 Jun; 23(5):448-458. PubMed ID: 29346010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An efficient method for the detection and elimination of systematic error in high-throughput screening.
    Makarenkov V; Zentilli P; Kevorkov D; Gagarin A; Malo N; Nadon R
    Bioinformatics; 2007 Jul; 23(13):1648-57. PubMed ID: 17463024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plate-based diversity subset screening generation 2: an improved paradigm for high-throughput screening of large compound files.
    Bell AS; Bradley J; Everett JR; Loesel J; McLoughlin D; Mills J; Peakman MC; Sharp RE; Williams C; Zhu H
    Mol Divers; 2016 Nov; 20(4):789-803. PubMed ID: 27631533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Statistical analysis of systematic errors in high-throughput screening.
    Kevorkov D; Makarenkov V
    J Biomol Screen; 2005 Sep; 10(6):557-67. PubMed ID: 16103415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A rapid and affordable screening platform for membrane protein trafficking.
    Snyder JC; Pack TF; Rochelle LK; Chakraborty SK; Zhang M; Eaton AW; Bai Y; Ernst LA; Barak LS; Waggoner AS; Caron MG
    BMC Biol; 2015 Dec; 13():107. PubMed ID: 26678094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental design and statistical methods for improved hit detection in high-throughput screening.
    Malo N; Hanley JA; Carlile G; Liu J; Pelletier J; Thomas D; Nadon R
    J Biomol Screen; 2010 Sep; 15(8):990-1000. PubMed ID: 20817887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal design for high-throughput screening via false discovery rate control.
    Feng T; Basu P; Sun W; Ku HT; Mack WJ
    Stat Med; 2019 Jul; 38(15):2816-2827. PubMed ID: 30924183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypothesis testing in high-throughput screening for drug discovery.
    Prummer M
    J Biomol Screen; 2012 Apr; 17(4):519-29. PubMed ID: 22233646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rethinking molecular similarity: comparing compounds on the basis of biological activity.
    Petrone PM; Simms B; Nigsch F; Lounkine E; Kutchukian P; Cornett A; Deng Z; Davies JW; Jenkins JL; Glick M
    ACS Chem Biol; 2012 Aug; 7(8):1399-409. PubMed ID: 22594495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using information from historical high-throughput screens to predict active compounds.
    Riniker S; Wang Y; Jenkins JL; Landrum GA
    J Chem Inf Model; 2014 Jul; 54(7):1880-91. PubMed ID: 24933016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control-Plate Regression (CPR) Normalization for High-Throughput Screens with Many Active Features.
    Murie C; Barette C; Lafanechère L; Nadon R
    J Biomol Screen; 2014 Jun; 19(5):661-71. PubMed ID: 24352083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implementation and Use of State-of-the-Art, Cell-Based In Vitro Assays.
    Langer G
    Handb Exp Pharmacol; 2016; 232():171-90. PubMed ID: 26424721
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.