BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 22563385)

  • 1. The carbon monoxide releasing molecule CORM-2 attenuates Pseudomonas aeruginosa biofilm formation.
    Murray TS; Okegbe C; Gao Y; Kazmierczak BI; Motterlini R; Dietrich LE; Bruscia EM
    PLoS One; 2012; 7(4):e35499. PubMed ID: 22563385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro evaluation of tobramycin and aztreonam versus Pseudomonas aeruginosa biofilms on cystic fibrosis-derived human airway epithelial cells.
    Yu Q; Griffin EF; Moreau-Marquis S; Schwartzman JD; Stanton BA; O'Toole GA
    J Antimicrob Chemother; 2012 Nov; 67(11):2673-81. PubMed ID: 22843834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon monoxide releasing molecule-2 attenuates Pseudomonas aeruginosa-induced ROS-dependent ICAM-1 expression in human pulmonary alveolar epithelial cells.
    Lee CW; Wu CH; Chiang YC; Chen YL; Chang KT; Chuang CC; Lee IT
    Redox Biol; 2018 Sep; 18():93-103. PubMed ID: 30007888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Psl Produced by Mucoid
    Jones CJ; Wozniak DJ
    mBio; 2017 Jun; 8(3):. PubMed ID: 28634241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ionophore oxyclozanide enhances tobramycin killing of Pseudomonas aeruginosa biofilms by permeabilizing cells and depolarizing the membrane potential.
    Maiden MM; Zachos MP; Waters CM
    J Antimicrob Chemother; 2019 Apr; 74(4):894-906. PubMed ID: 30624737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The complex interplay of iron, biofilm formation, and mucoidy affecting antimicrobial resistance of Pseudomonas aeruginosa.
    Oglesby-Sherrouse AG; Djapgne L; Nguyen AT; Vasil AI; Vasil ML
    Pathog Dis; 2014 Apr; 70(3):307-20. PubMed ID: 24436170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon monoxide releasing molecule-2 (CORM-2) inhibits growth of multidrug-resistant uropathogenic Escherichia coli in biofilm and following host cell colonization.
    Sahlberg Bang C; Kruse R; Johansson K; Persson K
    BMC Microbiol; 2016 Apr; 16():64. PubMed ID: 27067266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyruvate-depleting conditions induce biofilm dispersion and enhance the efficacy of antibiotics in killing biofilms in vitro and in vivo.
    Goodwine J; Gil J; Doiron A; Valdes J; Solis M; Higa A; Davis S; Sauer K
    Sci Rep; 2019 Mar; 9(1):3763. PubMed ID: 30842579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential antibacterial activity against Pseudomonas aeruginosa by carbon monoxide-releasing molecules.
    Desmard M; Foresti R; Morin D; Dagouassat M; Berdeaux A; Denamur E; Crook SH; Mann BE; Scapens D; Montravers P; Boczkowski J; Motterlini R
    Antioxid Redox Signal; 2012 Jan; 16(2):153-63. PubMed ID: 21864022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Treatment with the Pseudomonas aeruginosa Glycoside Hydrolase PslG Combats Wound Infection by Improving Antibiotic Efficacy and Host Innate Immune Activity.
    Pestrak MJ; Baker P; Dellos-Nolan S; Hill PJ; Passos da Silva D; Silver H; Lacdao I; Raju D; Parsek MR; Wozniak DJ; Howell PL
    Antimicrob Agents Chemother; 2019 Jun; 63(6):. PubMed ID: 30988141
    [No Abstract]   [Full Text] [Related]  

  • 11. Engineered cationic antimicrobial peptide (eCAP) prevents Pseudomonas aeruginosa biofilm growth on airway epithelial cells.
    Lashua LP; Melvin JA; Deslouches B; Pilewski JM; Montelaro RC; Bomberger JM
    J Antimicrob Chemother; 2016 Aug; 71(8):2200-7. PubMed ID: 27231279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro analysis of tobramycin-treated Pseudomonas aeruginosa biofilms on cystic fibrosis-derived airway epithelial cells.
    Anderson GG; Moreau-Marquis S; Stanton BA; O'Toole GA
    Infect Immun; 2008 Apr; 76(4):1423-33. PubMed ID: 18212077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa.
    Barraud N; Hassett DJ; Hwang SH; Rice SA; Kjelleberg S; Webb JS
    J Bacteriol; 2006 Nov; 188(21):7344-53. PubMed ID: 17050922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of oxygen limitation on the in vitro antimicrobial susceptibility of clinical isolates of Pseudomonas aeruginosa grown planktonically and as biofilms.
    Field TR; White A; Elborn JS; Tunney MM
    Eur J Clin Microbiol Infect Dis; 2005 Oct; 24(10):677-87. PubMed ID: 16249934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of Calgary and Microfluidic BioFlux Systems To Test the Activity of Fosfomycin and Tobramycin Alone and in Combination against Cystic Fibrosis Pseudomonas aeruginosa Biofilms.
    Díez-Aguilar M; Morosini MI; Köksal E; Oliver A; Ekkelenkamp M; Cantón R
    Antimicrob Agents Chemother; 2018 Jan; 62(1):. PubMed ID: 29084746
    [No Abstract]   [Full Text] [Related]  

  • 16. Characterizations of the viability and gene expression of dispersal cells from Pseudomonas aeruginosa biofilms released by alginate lyase and tobramycin.
    Daboor SM; Raudonis R; Cheng Z
    PLoS One; 2021; 16(10):e0258950. PubMed ID: 34695148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of pH on the antimicrobial susceptibility of planktonic and biofilm-grown clinical Pseudomonas aeruginosa isolates.
    Moriarty TF; Elborn JS; Tunney MM
    Br J Biomed Sci; 2007; 64(3):101-4. PubMed ID: 17910277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3,6-Di(pyridin-2-yl)-1,2,4,5-tetrazine (pytz)-capped silver nanoparticles (TzAgNPs) inhibit biofilm formation of Pseudomonas aeruginosa: a potential approach toward breaking the wall of biofilm through reactive oxygen species (ROS) generation.
    Chakraborty P; Joardar S; Ray S; Biswas P; Maiti D; Tribedi P
    Folia Microbiol (Praha); 2018 Nov; 63(6):763-772. PubMed ID: 29855854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anti-Pseudomonas aeruginosa activity of 1,10-phenanthroline-based drugs against both planktonic- and biofilm-growing cells.
    Viganor L; Galdino AC; Nunes AP; Santos KR; Branquinha MH; Devereux M; Kellett A; McCann M; Santos AL
    J Antimicrob Chemother; 2016 Jan; 71(1):128-34. PubMed ID: 26416778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A carbon monoxide-releasing molecule (CORM-3) exerts bactericidal activity against Pseudomonas aeruginosa and improves survival in an animal model of bacteraemia.
    Desmard M; Davidge KS; Bouvet O; Morin D; Roux D; Foresti R; Ricard JD; Denamur E; Poole RK; Montravers P; Motterlini R; Boczkowski J
    FASEB J; 2009 Apr; 23(4):1023-31. PubMed ID: 19095732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.