These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 22563605)

  • 1. A universal description for the experimental behavior of salt-(in)dependent oligocation-induced DNA condensation.
    Korolev N; Berezhnoy NV; Eom KD; Tam JP; Nordenskiöld L
    Nucleic Acids Res; 2012 Mar; 40(6):2808-21. PubMed ID: 22563605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A universal description for the experimental behavior of salt-(in)dependent oligocation-induced DNA condensation.
    Korolev N; Berezhnoy NV; Eom KD; Tam JP; Nordenskiöld L
    Nucleic Acids Res; 2009 Nov; 37(21):7137-50. PubMed ID: 19773427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of salt on oligocation-induced chromatin condensation.
    Korolev N; Zhao Y; Allahverdi A; Eom KD; Tam JP; Nordenskiöld L
    Biochem Biophys Res Commun; 2012 Feb; 418(2):205-10. PubMed ID: 22227197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamics of single-stranded RNA binding to oligolysines containing tryptophan.
    Mascotti DP; Lohman TM
    Biochemistry; 1992 Sep; 31(37):8932-46. PubMed ID: 1382582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and biophysical characterization of novel polycationic epsilon-peptides for DNA compaction and delivery.
    Huang D; Korolev N; Eom KD; Tam JP; Nordenskiöld L
    Biomacromolecules; 2008 Jan; 9(1):321-30. PubMed ID: 18047291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding and thermodynamics of REV peptide-ctDNA interaction.
    Upadhyay SK
    Biopolymers; 2017 Mar; 108(2):. PubMed ID: 27353011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Salt dependence of ion transport and DNA translocation through solid-state nanopores.
    Smeets RM; Keyser UF; Krapf D; Wu MY; Dekker NH; Dekker C
    Nano Lett; 2006 Jan; 6(1):89-95. PubMed ID: 16402793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamics of DNA condensation induced by poly(ethylene glycol)-block-polylysine through polyion complex micelle formation.
    Kim W; Yamasaki Y; Jang WD; Kataoka K
    Biomacromolecules; 2010 May; 11(5):1180-6. PubMed ID: 20397723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biophysical properties and supramolecular structure of self-assembled liposome/ε-peptide/DNA nanoparticles: correlation with gene delivery.
    Yan J; Korolev N; Eom KD; Tam JP; Nordenskiöld L
    Biomacromolecules; 2012 Jan; 13(1):124-31. PubMed ID: 22066663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA condensation by poly-L-lysine at the single molecule level: role of DNA concentration and polymer length.
    Mann A; Richa R; Ganguli M
    J Control Release; 2008 Feb; 125(3):252-62. PubMed ID: 18068848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer modeling reveals that modifications of the histone tail charges define salt-dependent interaction of the nucleosome core particles.
    Yang Y; Lyubartsev AP; Korolev N; Nordenskiöld L
    Biophys J; 2009 Mar; 96(6):2082-94. PubMed ID: 19289035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radioprotection of plasmid DNA by oligolysines.
    Newton GL; Ly A; Tran NQ; Ward JF; Milligan JR
    Int J Radiat Biol; 2004 Sep; 80(9):643-51. PubMed ID: 15586884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamics of DNA binding and condensation: isothermal titration calorimetry and electrostatic mechanism.
    Matulis D; Rouzina I; Bloomfield VA
    J Mol Biol; 2000 Mar; 296(4):1053-63. PubMed ID: 10686103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic differences in DNA nanoparticle formation in the presence of oligolysines and poly-L-lysine.
    Nayvelt I; Thomas T; Thomas TJ
    Biomacromolecules; 2007 Feb; 8(2):477-84. PubMed ID: 17291071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complex formation between polyelectrolytes and oppositely charged oligoelectrolytes.
    Zhou J; Barz M; Schmid F
    J Chem Phys; 2016 Apr; 144(16):164902. PubMed ID: 27131564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamics of single-stranded RNA and DNA interactions with oligolysines containing tryptophan. Effects of base composition.
    Mascotti DP; Lohman TM
    Biochemistry; 1993 Oct; 32(40):10568-79. PubMed ID: 7691177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA condensation by polyamines: a laser light scattering study of structural effects.
    Vijayanathan V; Thomas T; Shirahata A; Thomas TJ
    Biochemistry; 2001 Nov; 40(45):13644-51. PubMed ID: 11695913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrostatic free energy of the DNA double helix in counterion condensation theory.
    Manning GS
    Biophys Chem; 2002 Dec; 101-102():461-73. PubMed ID: 12488020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling of DNA condensation and decondensation caused by ligand binding.
    Lando DY; Teif VB
    J Biomol Struct Dyn; 2002 Oct; 20(2):215-22. PubMed ID: 12354073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions of ε-polylysine with carboxymethyl sweet potato starch with an emphasis on amino/carboxyl molar ratio.
    Guan Y; Ye F; Liu J; Zhao G
    J Agric Food Chem; 2013 Nov; 61(47):11653-9. PubMed ID: 24206259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.