BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 22563625)

  • 1. A functional loop spanning distant domains of glutaminyl-tRNA synthetase also stabilizes a molten globule state.
    Saha R; Dasgupta S; Banerjee R; Mitra-Bhattacharyya A; Söll D; Basu G; Roy S
    Biochemistry; 2012 Jun; 51(22):4429-37. PubMed ID: 22563625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A chimaeric glutamyl:glutaminyl-tRNA synthetase: implications for evolution.
    Saha R; Dasgupta S; Basu G; Roy S
    Biochem J; 2009 Jan; 417(2):449-55. PubMed ID: 18817520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modular evolution of the Glx-tRNA synthetase family--rooting of the evolutionary tree between the bacteria and archaea/eukarya branches.
    Siatecka M; Rozek M; Barciszewski J; Mirande M
    Eur J Biochem; 1998 Aug; 256(1):80-7. PubMed ID: 9746349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coevolution of specificity determinants in eukaryotic glutamyl- and glutaminyl-tRNA synthetases.
    Hadd A; Perona JJ
    J Mol Biol; 2014 Oct; 426(21):3619-33. PubMed ID: 25149203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary insights about bacterial GlxRS from whole genome analyses: is GluRS2 a chimera?
    Dasgupta S; Basu G
    BMC Evol Biol; 2014 Feb; 14():26. PubMed ID: 24521160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A rationally engineered misacylating aminoacyl-tRNA synthetase.
    Bullock TL; Rodríguez-Hernández A; Corigliano EM; Perona JJ
    Proc Natl Acad Sci U S A; 2008 May; 105(21):7428-33. PubMed ID: 18477696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The zinc-binding site of a class I aminoacyl-tRNA synthetase is a SWIM domain that modulates amino acid binding via the tRNA acceptor arm.
    Banerjee R; Dubois DY; Gauthier J; Lin SX; Roy S; Lapointe J
    Eur J Biochem; 2004 Feb; 271(4):724-33. PubMed ID: 14764088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene descent, duplication, and horizontal transfer in the evolution of glutamyl- and glutaminyl-tRNA synthetases.
    Brown JR; Doolittle WF
    J Mol Evol; 1999 Oct; 49(4):485-95. PubMed ID: 10486006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glutamyl-tRNA sythetase.
    Freist W; Gauss DH; Söll D; Lapointe J
    Biol Chem; 1997 Nov; 378(11):1313-29. PubMed ID: 9426192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Architectures of class-defining and specific domains of glutamyl-tRNA synthetase.
    Nureki O; Vassylyev DG; Katayanagi K; Shimizu T; Sekine S; Kigawa T; Miyazawa T; Yokoyama S; Morikawa K
    Science; 1995 Mar; 267(5206):1958-65. PubMed ID: 7701318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate selection by aminoacyl-tRNA synthetases.
    Ibba M; Thomann HU; Hong KW; Sherman JM; Weygand-Durasevic I; Sever S; Stange-Thomann N; Praetorius M; Söll D
    Nucleic Acids Symp Ser; 1995; (33):40-2. PubMed ID: 8643392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of the catalytic domain of E. coli GluRS in tRNAGln discrimination.
    Dasgupta S; Saha R; Dey C; Banerjee R; Roy S; Basu G
    FEBS Lett; 2009 Jun; 583(12):2114-20. PubMed ID: 19481543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Escherichia coli YadB gene product reveals a novel aminoacyl-tRNA synthetase like activity.
    Campanacci V; Dubois DY; Becker HD; Kern D; Spinelli S; Valencia C; Pagot F; Salomoni A; Grisel S; Vincentelli R; Bignon C; Lapointe J; Giegé R; Cambillau C
    J Mol Biol; 2004 Mar; 337(2):273-83. PubMed ID: 15003446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glu-Q-tRNA(Asp) synthetase coded by the yadB gene, a new paralog of aminoacyl-tRNA synthetase that glutamylates tRNA(Asp) anticodon.
    Blaise M; Becker HD; Lapointe J; Cambillau C; Giegé R; Kern D
    Biochimie; 2005; 87(9-10):847-61. PubMed ID: 16164993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Connecting anticodon recognition with the active site of Escherichia coli glutaminyl-tRNA synthetase.
    Weygand-Durasević I; Rogers MJ; Söll D
    J Mol Biol; 1994 Jul; 240(2):111-8. PubMed ID: 8027995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of the Glx-tRNA synthetase family: the glutaminyl enzyme as a case of horizontal gene transfer.
    Lamour V; Quevillon S; Diriong S; N'Guyen VC; Lipinski M; Mirande M
    Proc Natl Acad Sci U S A; 1994 Aug; 91(18):8670-4. PubMed ID: 8078941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rational design and directed evolution of a bacterial-type glutaminyl-tRNA synthetase precursor.
    Guo LT; Helgadóttir S; Söll D; Ling J
    Nucleic Acids Res; 2012 Sep; 40(16):7967-74. PubMed ID: 22661575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis for anticodon recognition by discriminating glutamyl-tRNA synthetase.
    Sekine S; Nureki O; Shimada A; Vassylyev DG; Yokoyama S
    Nat Struct Biol; 2001 Mar; 8(3):203-6. PubMed ID: 11224561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rational design of an evolutionary precursor of glutaminyl-tRNA synthetase.
    O'Donoghue P; Sheppard K; Nureki O; Söll D
    Proc Natl Acad Sci U S A; 2011 Dec; 108(51):20485-90. PubMed ID: 22158897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dispensability of zinc and the putative zinc-binding domain in bacterial glutamyl-tRNA synthetase.
    Chongdar N; Dasgupta S; Datta AB; Basu G
    Biosci Rep; 2015 Mar; 35(2):. PubMed ID: 25686371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.