These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 22563738)
1. Role of pectin methylesterases in cellular calcium distribution and blossom-end rot development in tomato fruit. de Freitas ST; Handa AK; Wu Q; Park S; Mitcham EJ Plant J; 2012 Sep; 71(5):824-35. PubMed ID: 22563738 [TBL] [Abstract][Full Text] [Related]
2. Calcium partitioning and allocation and blossom-end rot development in tomato plants in response to whole-plant and fruit-specific abscisic acid treatments. Tonetto de Freitas S; McElrone AJ; Shackel KA; Mitcham EJ J Exp Bot; 2014 Jan; 65(1):235-47. PubMed ID: 24220654 [TBL] [Abstract][Full Text] [Related]
3. Tissue specific localization of pectin-Ca²⁺ cross-linkages and pectin methyl-esterification during fruit ripening in tomato (Solanum lycopersicum). Hyodo H; Terao A; Furukawa J; Sakamoto N; Yurimoto H; Satoh S; Iwai H PLoS One; 2013; 8(11):e78949. PubMed ID: 24236073 [TBL] [Abstract][Full Text] [Related]
4. Dynamic alternations in cellular and molecular components during blossom-end rot development in tomatoes expressing sCAX1, a constitutively active Ca2+/H+ antiporter from Arabidopsis. Tonetto de Freitas S; Padda M; Wu Q; Park S; Mitcham EJ Plant Physiol; 2011 Jun; 156(2):844-55. PubMed ID: 21464475 [TBL] [Abstract][Full Text] [Related]
5. A cellular hypothesis for the induction of blossom-end rot in tomato fruit. Ho LC; White PJ Ann Bot; 2005 Mar; 95(4):571-81. PubMed ID: 15642726 [TBL] [Abstract][Full Text] [Related]
6. Abscisic acid triggers whole-plant and fruit-specific mechanisms to increase fruit calcium uptake and prevent blossom end rot development in tomato fruit. de Freitas ST; Shackel KA; Mitcham EJ J Exp Bot; 2011 May; 62(8):2645-56. PubMed ID: 21282326 [TBL] [Abstract][Full Text] [Related]
7. Integrative analysis of pectin methylesterase (PME) and PME inhibitors in tomato (Solanum lycopersicum): Identification, tissue-specific expression, and biochemical characterization. Jeong HY; Nguyen HP; Eom SH; Lee C Plant Physiol Biochem; 2018 Nov; 132():557-565. PubMed ID: 30326434 [TBL] [Abstract][Full Text] [Related]
8. Effect of silencing the two major tomato fruit pectin methylesterase isoforms on cell wall pectin metabolism. Wen B; Ström A; Tasker A; West G; Tucker GA Plant Biol (Stuttg); 2013 Nov; 15(6):1025-32. PubMed ID: 23573946 [TBL] [Abstract][Full Text] [Related]
9. Glutathione homeostasis as an important and novel factor controlling blossom-end rot development in calcium-deficient tomato fruits. Mestre TC; Garcia-Sanchez F; Rubio F; Martinez V; Rivero RM J Plant Physiol; 2012 Nov; 169(17):1719-27. PubMed ID: 22940289 [TBL] [Abstract][Full Text] [Related]
10. A functional pectin methylesterase inhibitor protein (SolyPMEI) is expressed during tomato fruit ripening and interacts with PME-1. Reca IB; Lionetti V; Camardella L; D'Avino R; Giardina T; Cervone F; Bellincampi D Plant Mol Biol; 2012 Jul; 79(4-5):429-42. PubMed ID: 22610346 [TBL] [Abstract][Full Text] [Related]
11. Methyl de-esterification as a major factor regulating the extent of pectin depolymerization during fruit ripening: a comparison of the action of avocado (Persea americana) and tomato (Lycopersicon esculentum) polygalacturonases. Wakabayashi K; Hoson T; Huber DJ J Plant Physiol; 2003 Jun; 160(6):667-73. PubMed ID: 12872489 [TBL] [Abstract][Full Text] [Related]
12. Genome wide identification and functional characterization of strawberry pectin methylesterases related to fruit softening. Xue C; Guan SC; Chen JQ; Wen CJ; Cai JF; Chen X BMC Plant Biol; 2020 Jan; 20(1):13. PubMed ID: 31914938 [TBL] [Abstract][Full Text] [Related]
13. Localization of calcium in the pericarp cells of tomato fruits during the development of blossom-end rot. Suzuki K; Shono M; Egawa Y Protoplasma; 2003; 222(3-4):149-56. PubMed ID: 14714203 [TBL] [Abstract][Full Text] [Related]
14. Silencing of the major salt-dependent isoform of pectinesterase in tomato alters fruit softening. Phan TD; Bo W; West G; Lycett GW; Tucker GA Plant Physiol; 2007 Aug; 144(4):1960-7. PubMed ID: 17556513 [TBL] [Abstract][Full Text] [Related]
16. Pectin methylesterases induce an abrupt increase of acidic pectin during strawberry fruit ripening. Draye M; Van Cutsem P J Plant Physiol; 2008 Jul; 165(11):1152-60. PubMed ID: 18160124 [TBL] [Abstract][Full Text] [Related]
17. Effects of Ca Sprays on Fruit Ca Content and Yield of Tomato Variety Susceptible to Blossom-End Rot. Karlsons A; Osvalde A; Cekstere G; Āboliņa L Plants (Basel); 2023 Apr; 12(8):. PubMed ID: 37111863 [TBL] [Abstract][Full Text] [Related]
18. Fruit Softening: Revisiting the Role of Pectin. Wang D; Yeats TH; Uluisik S; Rose JKC; Seymour GB Trends Plant Sci; 2018 Apr; 23(4):302-310. PubMed ID: 29429585 [TBL] [Abstract][Full Text] [Related]
19. Changes in the distribution of cell wall polysaccharides in early fruit pericarp and ovule, from fruit set to early fruit development, in tomato (Solanum lycopersicum). Terao A; Hyodo H; Satoh S; Iwai H J Plant Res; 2013 Sep; 126(5):719-28. PubMed ID: 23455617 [TBL] [Abstract][Full Text] [Related]
20. Epigenetic modification of a pectin methylesterase gene activates apoplastic iron reutilization in tomato roots. Zhu H; Wang J; Huang R; Yang Z; Fan W; Huang L; Yang J; Chen W Plant Physiol; 2024 Jun; 195(3):2339-2353. PubMed ID: 38506490 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]