BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

430 related articles for article (PubMed ID: 22563746)

  • 1. Endohedral beryllium atoms in germanium clusters with eight and fewer vertices: how small can a cluster be and still encapsulate a central atom?
    Uţă MM; King RB
    J Phys Chem A; 2012 May; 116(21):5227-34. PubMed ID: 22563746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyhedral structures with three-, four-, and five fold symmetry in metal-centered ten-vertex germanium clusters.
    King RB; Silaghi-Dumitrescu I; Uţă MM
    Chemistry; 2008; 14(15):4542-50. PubMed ID: 18386281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endohedral beryllium atoms in ten-vertex germanium clusters: effect of a small interstitial atom on the cluster geometry.
    King RB; Silaghi-Dumitrescu I; Uţă MM
    J Phys Chem A; 2011 Apr; 115(13):2847-52. PubMed ID: 21410279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Density functional theory study of twelve-atom germanium clusters: conflict between the Wade-Mingos rules and optimum vertex degrees.
    King RB; Silaghi-Dumitrescu I; Uţă MM
    Dalton Trans; 2007 Jan; (3):364-72. PubMed ID: 17200757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Density functional theory study of 11-atom germanium clusters: effect of electron count on cluster geometry.
    King RB; Silaghi-Dumitrescu I; Lupan A
    Inorg Chem; 2005 May; 44(10):3579-88. PubMed ID: 15877441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron-centered ten-vertex germanium clusters: the ubiquity of low energy pentagonal prismatic structures with various skeletal electron counts.
    Uţă MM; Cioloboc D; King RB
    J Phys Chem A; 2012 Sep; 116(36):9197-204. PubMed ID: 22920590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Density functional theory study of nine-atom germanium clusters: effect of electron count on cluster geometry.
    King RB; Silaghi-Dumitrescu I
    Inorg Chem; 2003 Oct; 42(21):6701-8. PubMed ID: 14552622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Density functional study of 8- and 11-vertex polyhedral borane structures: comparison with bare germanium clusters.
    King RB; Silaghi-Dumitrescu I; Lupan A
    Inorg Chem; 2005 Oct; 44(22):7819-24. PubMed ID: 16241131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cobalt-centered ten-vertex germanium clusters: the pentagonal prism as an alternative to polyhedra predicted by the Wade-Mingos rules.
    Uţă MM; Cioloboc D; King RB
    Inorg Chem; 2012 Mar; 51(6):3498-504. PubMed ID: 22390155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Empty versus filled polyhedra: 11 vertex bare germanium clusters.
    Uţă MM; King RB
    J Mol Model; 2014 Apr; 20(4):2193. PubMed ID: 24676498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Density functional theory study of eight-atom germanium clusters: effect of electron count on cluster geometry.
    King RB; Silaghi-Dumitrescu I; Lupan A
    Dalton Trans; 2005 May; (10):1858-64. PubMed ID: 15877159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The unique palladium-centered pentagonal antiprismatic cationic bismuth cluster: a comparison of related metal-centered 10-vertex pnictogen cluster structures by density functional theory.
    King RB; Silaghi-Dumitrescu I; Uţă MM
    Inorg Chem; 2009 Sep; 48(17):8508-14. PubMed ID: 19663411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endohedral nickel, palladium, and platinum atoms in 10-vertex germanium clusters: competition between bicapped square antiprismatic and pentagonal prismatic structures.
    King RB; Silaghi-Dumitrescu I; Uţa MM
    J Phys Chem A; 2009 Jan; 113(3):527-33. PubMed ID: 19108652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Density functional theory study of 10-atom germanium clusters: effect of electron count on cluster geometry.
    King RB; Silaghi-Dumitrescu I; Uţa MM
    Inorg Chem; 2006 Jun; 45(13):4974-81. PubMed ID: 16780318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From closo to isocloso structures and beyond in cobaltaboranes with 9 to 12 vertices.
    King RB; Silaghi-Dumitrescu I; Sovago I
    Inorg Chem; 2009 Nov; 48(21):10117-25. PubMed ID: 19791775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanosized (mu12-Pt)Pd164-xPtx(CO)72(PPh3)20 (x approximately 7) containing Pt-centered four-shell 165-atom Pd-Pt core with unprecedented intershell bridging carbonyl ligands: comparative analysis of icosahedral shell-growth patterns with geometrically related Pd145(CO)x(PEt3)30 (x approximately 60) containing capped three-shell Pd145 core.
    Mednikov EG; Jewell MC; Dahl LF
    J Am Chem Soc; 2007 Sep; 129(37):11619-30. PubMed ID: 17722929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endohedral nickel and palladium atoms in metal clusters: analogy to endohedral noble gas atoms in fullerenes in polyhedra with five-fold symmetry.
    King RB
    Dalton Trans; 2004 Nov; (21):3420-4. PubMed ID: 15510254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Geometries and electronic properties of the tungsten-doped germanium clusters: WGen (n = 1-17).
    Wang J; Han JG
    J Phys Chem A; 2006 Nov; 110(46):12670-7. PubMed ID: 17107119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A computational investigation of copper-doped germanium and germanium clusters by the density-functional theory.
    Wang J; Han JG
    J Chem Phys; 2005 Dec; 123(24):244303. PubMed ID: 16396533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deviations from the Most Spherical Deltahedra in Rhenatricarbaboranes Having 2n + 2 Wadean Skeletal Electrons.
    Attia AAA; Lupan A; King RB
    Inorg Chem; 2017 Dec; 56(24):15015-15025. PubMed ID: 29185721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.