These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
428 related articles for article (PubMed ID: 22563746)
1. Endohedral beryllium atoms in germanium clusters with eight and fewer vertices: how small can a cluster be and still encapsulate a central atom? Uţă MM; King RB J Phys Chem A; 2012 May; 116(21):5227-34. PubMed ID: 22563746 [TBL] [Abstract][Full Text] [Related]
2. Polyhedral structures with three-, four-, and five fold symmetry in metal-centered ten-vertex germanium clusters. King RB; Silaghi-Dumitrescu I; Uţă MM Chemistry; 2008; 14(15):4542-50. PubMed ID: 18386281 [TBL] [Abstract][Full Text] [Related]
3. Endohedral beryllium atoms in ten-vertex germanium clusters: effect of a small interstitial atom on the cluster geometry. King RB; Silaghi-Dumitrescu I; Uţă MM J Phys Chem A; 2011 Apr; 115(13):2847-52. PubMed ID: 21410279 [TBL] [Abstract][Full Text] [Related]
4. Density functional theory study of twelve-atom germanium clusters: conflict between the Wade-Mingos rules and optimum vertex degrees. King RB; Silaghi-Dumitrescu I; Uţă MM Dalton Trans; 2007 Jan; (3):364-72. PubMed ID: 17200757 [TBL] [Abstract][Full Text] [Related]
5. Density functional theory study of 11-atom germanium clusters: effect of electron count on cluster geometry. King RB; Silaghi-Dumitrescu I; Lupan A Inorg Chem; 2005 May; 44(10):3579-88. PubMed ID: 15877441 [TBL] [Abstract][Full Text] [Related]
6. Iron-centered ten-vertex germanium clusters: the ubiquity of low energy pentagonal prismatic structures with various skeletal electron counts. Uţă MM; Cioloboc D; King RB J Phys Chem A; 2012 Sep; 116(36):9197-204. PubMed ID: 22920590 [TBL] [Abstract][Full Text] [Related]
7. Density functional theory study of nine-atom germanium clusters: effect of electron count on cluster geometry. King RB; Silaghi-Dumitrescu I Inorg Chem; 2003 Oct; 42(21):6701-8. PubMed ID: 14552622 [TBL] [Abstract][Full Text] [Related]
8. Density functional study of 8- and 11-vertex polyhedral borane structures: comparison with bare germanium clusters. King RB; Silaghi-Dumitrescu I; Lupan A Inorg Chem; 2005 Oct; 44(22):7819-24. PubMed ID: 16241131 [TBL] [Abstract][Full Text] [Related]
9. Cobalt-centered ten-vertex germanium clusters: the pentagonal prism as an alternative to polyhedra predicted by the Wade-Mingos rules. Uţă MM; Cioloboc D; King RB Inorg Chem; 2012 Mar; 51(6):3498-504. PubMed ID: 22390155 [TBL] [Abstract][Full Text] [Related]
10. Empty versus filled polyhedra: 11 vertex bare germanium clusters. Uţă MM; King RB J Mol Model; 2014 Apr; 20(4):2193. PubMed ID: 24676498 [TBL] [Abstract][Full Text] [Related]
11. Density functional theory study of eight-atom germanium clusters: effect of electron count on cluster geometry. King RB; Silaghi-Dumitrescu I; Lupan A Dalton Trans; 2005 May; (10):1858-64. PubMed ID: 15877159 [TBL] [Abstract][Full Text] [Related]
12. The unique palladium-centered pentagonal antiprismatic cationic bismuth cluster: a comparison of related metal-centered 10-vertex pnictogen cluster structures by density functional theory. King RB; Silaghi-Dumitrescu I; Uţă MM Inorg Chem; 2009 Sep; 48(17):8508-14. PubMed ID: 19663411 [TBL] [Abstract][Full Text] [Related]
13. Endohedral nickel, palladium, and platinum atoms in 10-vertex germanium clusters: competition between bicapped square antiprismatic and pentagonal prismatic structures. King RB; Silaghi-Dumitrescu I; Uţa MM J Phys Chem A; 2009 Jan; 113(3):527-33. PubMed ID: 19108652 [TBL] [Abstract][Full Text] [Related]
14. Density functional theory study of 10-atom germanium clusters: effect of electron count on cluster geometry. King RB; Silaghi-Dumitrescu I; Uţa MM Inorg Chem; 2006 Jun; 45(13):4974-81. PubMed ID: 16780318 [TBL] [Abstract][Full Text] [Related]
15. From closo to isocloso structures and beyond in cobaltaboranes with 9 to 12 vertices. King RB; Silaghi-Dumitrescu I; Sovago I Inorg Chem; 2009 Nov; 48(21):10117-25. PubMed ID: 19791775 [TBL] [Abstract][Full Text] [Related]
16. Nanosized (mu12-Pt)Pd164-xPtx(CO)72(PPh3)20 (x approximately 7) containing Pt-centered four-shell 165-atom Pd-Pt core with unprecedented intershell bridging carbonyl ligands: comparative analysis of icosahedral shell-growth patterns with geometrically related Pd145(CO)x(PEt3)30 (x approximately 60) containing capped three-shell Pd145 core. Mednikov EG; Jewell MC; Dahl LF J Am Chem Soc; 2007 Sep; 129(37):11619-30. PubMed ID: 17722929 [TBL] [Abstract][Full Text] [Related]
17. Endohedral nickel and palladium atoms in metal clusters: analogy to endohedral noble gas atoms in fullerenes in polyhedra with five-fold symmetry. King RB Dalton Trans; 2004 Nov; (21):3420-4. PubMed ID: 15510254 [TBL] [Abstract][Full Text] [Related]
18. Geometries and electronic properties of the tungsten-doped germanium clusters: WGen (n = 1-17). Wang J; Han JG J Phys Chem A; 2006 Nov; 110(46):12670-7. PubMed ID: 17107119 [TBL] [Abstract][Full Text] [Related]
19. A computational investigation of copper-doped germanium and germanium clusters by the density-functional theory. Wang J; Han JG J Chem Phys; 2005 Dec; 123(24):244303. PubMed ID: 16396533 [TBL] [Abstract][Full Text] [Related]
20. Deviations from the Most Spherical Deltahedra in Rhenatricarbaboranes Having 2n + 2 Wadean Skeletal Electrons. Attia AAA; Lupan A; King RB Inorg Chem; 2017 Dec; 56(24):15015-15025. PubMed ID: 29185721 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]