These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
527 related articles for article (PubMed ID: 22564129)
1. Membrane emulsification and solvent pervaporation processes for the continuous synthesis of functional magnetic and Janus nanobeads. Chang EP; Hatton TA Langmuir; 2012 Jun; 28(25):9748-58. PubMed ID: 22564129 [TBL] [Abstract][Full Text] [Related]
2. Novel one-pot facile technique for preparing nanoparticles modified with hydrophilic polymers on the surface via block polymer-assisted emulsification/evaporation process. Kanakubo Y; Ito F; Murakami Y Colloids Surf B Biointerfaces; 2010 Jun; 78(1):85-91. PubMed ID: 20223642 [TBL] [Abstract][Full Text] [Related]
3. Nanobeads highly loaded with superparamagnetic nanoparticles prepared by emulsification and seeded-emulsion polymerization. Paquet C; Pagé L; Kell A; Simard B Langmuir; 2010 Apr; 26(8):5388-96. PubMed ID: 20000392 [TBL] [Abstract][Full Text] [Related]
4. Microparticle formation and its mechanism in single and double emulsion solvent evaporation. Rosca ID; Watari F; Uo M J Control Release; 2004 Sep; 99(2):271-80. PubMed ID: 15380636 [TBL] [Abstract][Full Text] [Related]
5. Controlled assembly of nanoparticle structures: spherical and toroidal superlattices and nanoparticle-coated polymeric beads. Isojima T; Suh SK; Vander Sande JB; Hatton TA Langmuir; 2009 Jul; 25(14):8292-8. PubMed ID: 19435297 [TBL] [Abstract][Full Text] [Related]
6. Preparation and controlled self-assembly of Janus magnetic nanoparticles. Lattuada M; Hatton TA J Am Chem Soc; 2007 Oct; 129(42):12878-89. PubMed ID: 17910450 [TBL] [Abstract][Full Text] [Related]
7. Formation of polymeric nano-emulsions by a low-energy method and their use for nanoparticle preparation. Calderó G; García-Celma MJ; Solans C J Colloid Interface Sci; 2011 Jan; 353(2):406-11. PubMed ID: 20971472 [TBL] [Abstract][Full Text] [Related]
8. Formation of Pickering emulsions stabilized via interaction between nanoparticles dispersed in aqueous phase and polymer end groups dissolved in oil phase. Okada M; Maeda H; Fujii S; Nakamura Y; Furuzono T Langmuir; 2012 Jun; 28(25):9405-12. PubMed ID: 22616726 [TBL] [Abstract][Full Text] [Related]
9. Superparamagnetic nanoclusters coated with oleic acid bilayers for stabilization of emulsions of water and oil at low concentration. Ingram DR; Kotsmar C; Yoon KY; Shao S; Huh C; Bryant SL; Milner TE; Johnston KP J Colloid Interface Sci; 2010 Nov; 351(1):225-32. PubMed ID: 20719327 [TBL] [Abstract][Full Text] [Related]
10. Development in modeling submicron particle formation in two phases flow of solvent-supercritical antisolvent emulsion. Dukhin SS; Shen Y; Dave R; Pfeffer R Adv Colloid Interface Sci; 2007 Oct; 134-135():72-88. PubMed ID: 17568550 [TBL] [Abstract][Full Text] [Related]
11. Submicrometer-sized Pickering emulsions stabilized by silica nanoparticles with adsorbed oleic acid. Sadeghpour A; Pirolt F; Glatter O Langmuir; 2013 May; 29(20):6004-12. PubMed ID: 23650929 [TBL] [Abstract][Full Text] [Related]
12. Macroporous polymers obtained in highly concentrated emulsions stabilized solely with magnetic nanoparticles. Vílchez A; Rodríguez-Abreu C; Esquena J; Menner A; Bismarck A Langmuir; 2011 Nov; 27(21):13342-52. PubMed ID: 21905679 [TBL] [Abstract][Full Text] [Related]
13. Haloperidol-loaded PLGA nanoparticles: systematic study of particle size and drug content. Budhian A; Siegel SJ; Winey KI Int J Pharm; 2007 May; 336(2):367-75. PubMed ID: 17207944 [TBL] [Abstract][Full Text] [Related]
14. Formation of organic nanoparticles by electrospinning of volatile microemulsions. Dvores MP; Marom G; Magdassi S Langmuir; 2012 May; 28(17):6978-84. PubMed ID: 22452574 [TBL] [Abstract][Full Text] [Related]
15. Nanoparticle infiltration to prepare solvent-free controlled drug delivery systems. Rodríguez-Cruz IM; Domínguez-Delgado CL; Escobar-Chávez JJ; Leyva-Gómez G; Ganem-Quintanar A; Quintanar-Guerrero D Int J Pharm; 2009 Apr; 371(1-2):177-81. PubMed ID: 19150491 [TBL] [Abstract][Full Text] [Related]
16. Effect of process parameters on nanoemulsion droplet size and distribution in SPG membrane emulsification. Oh DH; Balakrishnan P; Oh YK; Kim DD; Yong CS; Choi HG Int J Pharm; 2011 Feb; 404(1-2):191-7. PubMed ID: 21055456 [TBL] [Abstract][Full Text] [Related]
17. Homogeneous and heterogeneous binary colloidal clusters formed by evaporation-induced self-assembly inside droplets. Cho YS; Yi GR; Kim SH; Elsesser MT; Breed DR; Yang SM J Colloid Interface Sci; 2008 Feb; 318(1):124-33. PubMed ID: 17976635 [TBL] [Abstract][Full Text] [Related]
18. Influence of process parameters on the size distribution of PLA microcapsules prepared by combining membrane emulsification technique and double emulsion-solvent evaporation method. Liu R; Ma GH; Wan YH; Su ZG Colloids Surf B Biointerfaces; 2005 Nov; 45(3-4):144-53. PubMed ID: 16198091 [TBL] [Abstract][Full Text] [Related]
19. Formation of silica nanoparticles in microemulsions. Finnie KS; Bartlett JR; Barbé CJ; Kong L Langmuir; 2007 Mar; 23(6):3017-24. PubMed ID: 17300209 [TBL] [Abstract][Full Text] [Related]
20. Reversible clustering of pH- and temperature-responsive Janus magnetic nanoparticles. Isojima T; Lattuada M; Vander Sande JB; Hatton TA ACS Nano; 2008 Sep; 2(9):1799-806. PubMed ID: 19206418 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]