These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
71 related articles for article (PubMed ID: 22564275)
1. Transgenic tobacco plants as production platform for biologically active human interleukin 2 and its fusion with proteinase inhibitors. Redkiewicz P; Więsyk A; Góra-Sochacka A; Sirko A Plant Biotechnol J; 2012 Sep; 10(7):806-14. PubMed ID: 22564275 [TBL] [Abstract][Full Text] [Related]
2. A novel platform for biologically active recombinant human interleukin-13 production. Wang DJ; Brandsma M; Yin Z; Wang A; Jevnikar AM; Ma S Plant Biotechnol J; 2008 Jun; 6(5):504-15. PubMed ID: 18393948 [TBL] [Abstract][Full Text] [Related]
3. Engineered resistance against proteinases. Milner M; Chroboczek J; Zagorski-Ostoja W Acta Biochim Pol; 2007; 54(3):523-36. PubMed ID: 17823663 [TBL] [Abstract][Full Text] [Related]
4. Expression of bioactive human M-CSF soluble receptor in transgenic tobacco plants. Zheng GG; Yang YH; Rao Q; Lin YM; Zhang B; Wu KF Protein Expr Purif; 2006 Apr; 46(2):367-73. PubMed ID: 16139512 [TBL] [Abstract][Full Text] [Related]
5. Expression and production of bioactive human interleukin-18 in transgenic tobacco plants. Zhang B; Yang YH; Lin YM; Rao Q; Zheng GG; Wu KF Biotechnol Lett; 2003 Oct; 25(19):1629-35. PubMed ID: 14584919 [TBL] [Abstract][Full Text] [Related]
6. Considerations for extraction of monoclonal antibodies targeted to different subcellular compartments in transgenic tobacco plants. Hassan S; van Dolleweerd CJ; Ioakeimidis F; Keshavarz-Moore E; Ma JK Plant Biotechnol J; 2008 Sep; 6(7):733-48. PubMed ID: 18513238 [TBL] [Abstract][Full Text] [Related]
7. [Proteinase inhibitors in plant biotechnology: a review]. Mosolov VV; Valueva TA Prikl Biokhim Mikrobiol; 2008; 44(3):261-9. PubMed ID: 18663947 [TBL] [Abstract][Full Text] [Related]
8. Genetically pyramiding protease-inhibitor genes for dual broad-spectrum resistance against insect and phytopathogens in transgenic tobacco. Senthilkumar R; Cheng CP; Yeh KW Plant Biotechnol J; 2010 Jan; 8(1):65-75. PubMed ID: 20055959 [TBL] [Abstract][Full Text] [Related]
9. Stable and specific expression of 4-coumarate:coenzyme A ligase gene (4CL1) driven by the xylem-specific Pto4CL1 promoter in the transgenic tobacco. Lu H; Zhao YL; Jiang XN Biotechnol Lett; 2004 Jul; 26(14):1147-52. PubMed ID: 15266121 [TBL] [Abstract][Full Text] [Related]
10. Transgenic rice plants harboring an introduced potato proteinase inhibitor II gene are insect resistant. Duan X; Li X; Xue Q; Abo-el-Saad M; Xu D; Wu R Nat Biotechnol; 1996 Apr; 14(4):494-8. PubMed ID: 9630927 [TBL] [Abstract][Full Text] [Related]
11. Protease inhibitor from insect silk-activities of derivatives expressed in vitro and in transgenic potato. Kodrík D; Kludkiewicz B; Navrátil O; Skoková Habuštová O; Horáčková V; Svobodová Z; Vinokurov KS; Sehnal F Appl Biochem Biotechnol; 2013 Sep; 171(1):209-24. PubMed ID: 23824530 [TBL] [Abstract][Full Text] [Related]
12. Pathogen-induced expression of a cecropin A-melittin antimicrobial peptide gene confers antifungal resistance in transgenic tobacco. Yevtushenko DP; Romero R; Forward BS; Hancock RE; Kay WW; Misra S J Exp Bot; 2005 Jun; 56(416):1685-95. PubMed ID: 15863447 [TBL] [Abstract][Full Text] [Related]
13. [Expression of Mortierella isabellina delta6-fatty acid desaturase gene in gamma-linolenic acid production in transgenic tobacco]. Li MC; Liu L; Hu GW; Xing LJ Sheng Wu Gong Cheng Xue Bao; 2003 Mar; 19(2):178-84. PubMed ID: 15966318 [TBL] [Abstract][Full Text] [Related]
14. Production of camel-like antibodies in plants. De Buck S; Virdi V; De Meyer T; De Wilde K; Piron R; Nolf J; Van Lerberge E; De Paepe A; Depicker A Methods Mol Biol; 2012; 911():305-24. PubMed ID: 22886260 [TBL] [Abstract][Full Text] [Related]
15. Co-expression of proteinase inhibitor enhances recombinant human granulocyte-macrophage colony stimulating factor production in transgenic rice cell suspension culture. Kim TG; Lee HJ; Jang YS; Shin YJ; Kwon TH; Yang MS Protein Expr Purif; 2008 Oct; 61(2):117-21. PubMed ID: 18634882 [TBL] [Abstract][Full Text] [Related]
16. HIV-1 p24-immunoglobulin fusion molecule: a new strategy for plant-based protein production. Obregon P; Chargelegue D; Drake PM; Prada A; Nuttall J; Frigerio L; Ma JK Plant Biotechnol J; 2006 Mar; 4(2):195-207. PubMed ID: 17177796 [TBL] [Abstract][Full Text] [Related]
17. Expression of a single-chain human interleukin-12 gene in transgenic tobacco plants and functional studies. Gutiérrez-Ortega A; Avila-Moreno F; Saucedo-Arias LJ; Sánchez-Torres C; Gómez-Lim MA Biotechnol Bioeng; 2004 Mar; 85(7):734-40. PubMed ID: 14991651 [TBL] [Abstract][Full Text] [Related]
18. High-efficiency secretory production of peroxidase C1a using vesicular transport engineering in transgenic tobacco. Matsui T; Hori M; Shizawa N; Nakayama H; Shinmyo A; Yoshida K J Biosci Bioeng; 2006 Aug; 102(2):102-9. PubMed ID: 17027871 [TBL] [Abstract][Full Text] [Related]
19. Transient expression of strictosidine synthase in tobacco leaves by vacuum infiltration. Wang M; Li QR Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai); 2002 Nov; 34(6):703-6. PubMed ID: 12417910 [TBL] [Abstract][Full Text] [Related]
20. Forcing single-chain variable fragment production in tobacco seeds by fusion to elastin-like polypeptides. Scheller J; Leps M; Conrad U Plant Biotechnol J; 2006 Mar; 4(2):243-9. PubMed ID: 17177800 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]