BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 22564400)

  • 1. Batch versus continuous feeding strategies for pharmaceutical removal by subsurface flow constructed wetland.
    Zhang DQ; Gersberg RM; Zhu J; Hua T; Jinadasa KB; Tan SK
    Environ Pollut; 2012 Aug; 167():124-31. PubMed ID: 22564400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pharmaceutical removal in tropical subsurface flow constructed wetlands at varying hydraulic loading rates.
    Zhang DQ; Gersberg RM; Hua T; Zhu J; Tuan NA; Tan SK
    Chemosphere; 2012 Apr; 87(3):273-7. PubMed ID: 22264861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of feeding strategies on pharmaceutical removal by subsurface flow constructed wetlands.
    Zhang DQ; Gersberg RM; Hua T; Zhu J; Nguyen AT; Law WK; Ng WJ; Tan SK
    J Environ Qual; 2012; 41(5):1674-80. PubMed ID: 23099959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive assessment of the design configuration of constructed wetlands for the removal of pharmaceuticals and personal care products from urban wastewaters.
    Hijosa-Valsero M; Matamoros V; Sidrach-Cardona R; Martín-Villacorta J; Bécares E; Bayona JM
    Water Res; 2010 Jun; 44(12):3669-78. PubMed ID: 20494393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporal evolution in PPCP removal from urban wastewater by constructed wetlands of different configuration: a medium-term study.
    Reyes-Contreras C; Hijosa-Valsero M; Sidrach-Cardona R; Bayona JM; Bécares E
    Chemosphere; 2012 Jun; 88(2):161-7. PubMed ID: 22436587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Behaviour of pharmaceuticals and personal care products in constructed wetland compartments: Influent, effluent, pore water, substrate and plant roots.
    Hijosa-Valsero M; Reyes-Contreras C; Domínguez C; Bécares E; Bayona JM
    Chemosphere; 2016 Feb; 145():508-17. PubMed ID: 26702554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of pharmaceuticals in microcosm constructed wetlands using Typha spp. and LECA.
    Dordio A; Carvalho AJ; Teixeira DM; Dias CB; Pinto AP
    Bioresour Technol; 2010 Feb; 101(3):886-92. PubMed ID: 19783427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of design, physico-chemical and environmental parameters on pharmaceuticals and fragrances removal by constructed wetlands.
    Hijosa-Valsero M; Matamoros V; Sidrach-Cardona R; Pedescoll A; Martín-Villacorta J; García J; Bayona JM; Bécares E
    Water Sci Technol; 2011; 63(11):2527-34. PubMed ID: 22049744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Capacity of a horizontal subsurface flow constructed wetland system for the removal of emerging pollutants: an injection experiment.
    Avila C; Pedescoll A; Matamoros V; Bayona JM; García J
    Chemosphere; 2010 Nov; 81(9):1137-42. PubMed ID: 20864142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nutrient removal in tropical subsurface flow constructed wetlands under batch and continuous flow conditions.
    Zhang DQ; Tan SK; Gersberg RM; Zhu J; Sadreddini S; Li Y
    J Environ Manage; 2012 Apr; 96(1):1-6. PubMed ID: 22208392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fate of pharmaceutical compounds in hydroponic mesocosms planted with Scirpus validus.
    Zhang DQ; Gersberg RM; Hua T; Zhu J; Goyal MK; Ng WJ; Tan SK
    Environ Pollut; 2013 Oct; 181():98-106. PubMed ID: 23845767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pathways and metabolites of microbial degradation of selected acidic pharmaceutical and their occurrence in municipal wastewater treated by a membrane bioreactor.
    Quintana JB; Weiss S; Reemtsma T
    Water Res; 2005 Jul; 39(12):2654-64. PubMed ID: 15979124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of acidic pharmaceuticals by small-scale constructed wetlands using different design configurations.
    Zhang X; Jing R; Feng X; Dai Y; Tao R; Vymazal J; Cai N; Yang Y
    Sci Total Environ; 2018 Oct; 639():640-647. PubMed ID: 29803037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organic micropollutant removal in a full-scale surface flow constructed wetland fed with secondary effluent.
    Matamoros V; García J; Bayona JM
    Water Res; 2008 Feb; 42(3):653-60. PubMed ID: 17826819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradation of ibuprofen, diclofenac and carbamazepine in nitrifying activated sludge under 12 °C temperature conditions.
    Kruglova A; Ahlgren P; Korhonen N; Rantanen P; Mikola A; Vahala R
    Sci Total Environ; 2014 Nov; 499():394-401. PubMed ID: 25215408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Occurrence and risk assessment of five selected PPCPs in municipal wastewater treatment plant and the receiving water].
    Wen ZH; Duan YP; Meng XZ; Chen L
    Huan Jing Ke Xue; 2013 Mar; 34(3):927-32. PubMed ID: 23745396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Behavior of selected pharmaceuticals in subsurface flow constructed wetlands: a pilot-scale study.
    Matamoros V; García J; Bayona JM
    Environ Sci Technol; 2005 Jul; 39(14):5449-54. PubMed ID: 16082979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Occurrence and fate of carbamazepine, clofibric acid, diclofenac, ibuprofen, ketoprofen, and naproxen in surface waters.
    Tixier C; Singer HP; Oellers S; Müller SR
    Environ Sci Technol; 2003 Mar; 37(6):1061-8. PubMed ID: 12680655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of different feeding strategies and plant presence on the performance of shallow horizontal subsurface-flow constructed wetlands.
    Caselles-Osorio A; García J
    Sci Total Environ; 2007 Jun; 378(3):253-62. PubMed ID: 17433416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tracking acidic pharmaceuticals, caffeine, and triclosan through the wastewater treatment process.
    Thomas PM; Foster GD
    Environ Toxicol Chem; 2005 Jan; 24(1):25-30. PubMed ID: 15683164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.