These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

449 related articles for article (PubMed ID: 22564405)

  • 1. Recognition of medication information from discharge summaries using ensembles of classifiers.
    Doan S; Collier N; Xu H; Pham HD; Tu MP
    BMC Med Inform Decis Mak; 2012 May; 12():36. PubMed ID: 22564405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recognizing clinical entities in hospital discharge summaries using Structural Support Vector Machines with word representation features.
    Tang B; Cao H; Wu Y; Jiang M; Xu H
    BMC Med Inform Decis Mak; 2013; 13 Suppl 1(Suppl 1):S1. PubMed ID: 23566040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detecting abbreviations in discharge summaries using machine learning methods.
    Wu Y; Rosenbloom ST; Denny JC; Miller RA; Mani S; Giuse DA; Xu H
    AMIA Annu Symp Proc; 2011; 2011():1541-9. PubMed ID: 22195219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of semantic features to classify patient smoking status.
    McCormick PJ; Elhadad N; Stetson PD
    AMIA Annu Symp Proc; 2008 Nov; 2008():450-4. PubMed ID: 18998969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An end-to-end system to identify temporal relation in discharge summaries: 2012 i2b2 challenge.
    Xu Y; Wang Y; Liu T; Tsujii J; Chang EI
    J Am Med Inform Assoc; 2013; 20(5):849-58. PubMed ID: 23467472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrating existing natural language processing tools for medication extraction from discharge summaries.
    Doan S; Bastarache L; Klimkowski S; Denny JC; Xu H
    J Am Med Inform Assoc; 2010; 17(5):528-31. PubMed ID: 20819857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries.
    Jiang M; Chen Y; Liu M; Rosenbloom ST; Mani S; Denny JC; Xu H
    J Am Med Inform Assoc; 2011; 18(5):601-6. PubMed ID: 21508414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recognizing Medication related Entities in Hospital Discharge Summaries using Support Vector Machine.
    Doan S; Xu H
    Proc Int Conf Comput Ling; 2010 Aug; 2010():259-266. PubMed ID: 26848286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High accuracy information extraction of medication information from clinical notes: 2009 i2b2 medication extraction challenge.
    Patrick J; Li M
    J Am Med Inform Assoc; 2010; 17(5):524-7. PubMed ID: 20819856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Textractor: a hybrid system for medications and reason for their prescription extraction from clinical text documents.
    Meystre SM; Thibault J; Shen S; Hurdle JF; South BR
    J Am Med Inform Assoc; 2010; 17(5):559-62. PubMed ID: 20819864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ensembles of natural language processing systems for portable phenotyping solutions.
    Liu C; Ta CN; Rogers JR; Li Z; Lee J; Butler AM; Shang N; Kury FSP; Wang L; Shen F; Liu H; Ena L; Friedman C; Weng C
    J Biomed Inform; 2019 Dec; 100():103318. PubMed ID: 31655273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ensemble method-based extraction of medication and related information from clinical texts.
    Kim Y; Meystre SM
    J Am Med Inform Assoc; 2020 Jan; 27(1):31-38. PubMed ID: 31282932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic extraction of medication information from medical discharge summaries.
    Yang H
    J Am Med Inform Assoc; 2010; 17(5):545-8. PubMed ID: 20819861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lancet: a high precision medication event extraction system for clinical text.
    Li Z; Liu F; Antieau L; Cao Y; Yu H
    J Am Med Inform Assoc; 2010; 17(5):563-7. PubMed ID: 20819865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving textual medication extraction using combined conditional random fields and rule-based systems.
    Tikk D; Solt I
    J Am Med Inform Assoc; 2010; 17(5):540-4. PubMed ID: 20819860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comprehensive study of named entity recognition in Chinese clinical text.
    Lei J; Tang B; Lu X; Gao K; Jiang M; Xu H
    J Am Med Inform Assoc; 2014; 21(5):808-14. PubMed ID: 24347408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study of deep learning approaches for medication and adverse drug event extraction from clinical text.
    Wei Q; Ji Z; Li Z; Du J; Wang J; Xu J; Xiang Y; Tiryaki F; Wu S; Zhang Y; Tao C; Xu H
    J Am Med Inform Assoc; 2020 Jan; 27(1):13-21. PubMed ID: 31135882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Social Reminiscence in Older Adults' Everyday Conversations: Automated Detection Using Natural Language Processing and Machine Learning.
    Ferrario A; Demiray B; Yordanova K; Luo M; Martin M
    J Med Internet Res; 2020 Sep; 22(9):e19133. PubMed ID: 32866108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A la Recherche du Temps Perdu: extracting temporal relations from medical text in the 2012 i2b2 NLP challenge.
    Cherry C; Zhu X; Martin J; de Bruijn B
    J Am Med Inform Assoc; 2013; 20(5):843-8. PubMed ID: 23523875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Information extraction from multi-institutional radiology reports.
    Hassanpour S; Langlotz CP
    Artif Intell Med; 2016 Jan; 66():29-39. PubMed ID: 26481140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.