These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 22564783)
1. The transcriptome of Spodoptera exigua larvae exposed to different types of microbes. Pascual L; Jakubowska AK; Blanca JM; Cañizares J; Ferré J; Gloeckner G; Vogel H; Herrero S Insect Biochem Mol Biol; 2012 Aug; 42(8):557-70. PubMed ID: 22564783 [TBL] [Abstract][Full Text] [Related]
2. Lysozymes and lysozyme-like proteins from the fall armyworm, Spodoptera frugiperda. Chapelle M; Girard PA; Cousserans F; Volkoff NA; Duvic B Mol Immunol; 2009 Dec; 47(2-3):261-9. PubMed ID: 19828200 [TBL] [Abstract][Full Text] [Related]
3. Genome sequence of SeIV-1, a novel virus from the Iflaviridae family infective to Spodoptera exigua. Millán-Leiva A; Jakubowska AK; Ferré J; Herrero S J Invertebr Pathol; 2012 Jan; 109(1):127-33. PubMed ID: 22041201 [TBL] [Abstract][Full Text] [Related]
4. Dissimilar Regulation of Antimicrobial Proteins in the Midgut of Spodoptera exigua Larvae Challenged with Bacillus thuringiensis Toxins or Baculovirus. Crava CM; Jakubowska AK; Escriche B; Herrero S; Bel Y PLoS One; 2015; 10(5):e0125991. PubMed ID: 25993013 [TBL] [Abstract][Full Text] [Related]
5. RNA interference of an antimicrobial peptide, gloverin, of the beet armyworm, Spodoptera exigua, enhances susceptibility to Bacillus thuringiensis. Hwang J; Kim Y J Invertebr Pathol; 2011 Nov; 108(3):194-200. PubMed ID: 21925182 [TBL] [Abstract][Full Text] [Related]
6. Developmental regulation and antifungal activity of a growth-blocking peptide from the beet armyworm Spodoptera exigua. Wan H; Lee KS; Kim BY; Yuan M; Zhan S; Lu Y; You H; Li J; Jin BR Dev Comp Immunol; 2013 Oct; 41(2):240-7. PubMed ID: 23732405 [TBL] [Abstract][Full Text] [Related]
8. Functional interactions between members of the REPAT family of insect pathogen-induced proteins. Navarro-Cerrillo G; Ferré J; de Maagd RA; Herrero S Insect Mol Biol; 2012 Jun; 21(3):335-42. PubMed ID: 22404489 [TBL] [Abstract][Full Text] [Related]
9. REPAT, a new family of proteins induced by bacterial toxins and baculovirus infection in Spodoptera exigua. Herrero S; Ansems M; Van Oers MM; Vlak JM; Bakker PL; de Maagd RA Insect Biochem Mol Biol; 2007 Nov; 37(11):1109-18. PubMed ID: 17916497 [TBL] [Abstract][Full Text] [Related]
10. RNA interference-mediated knockdown of three putative aminopeptidases N affects susceptibility of Spodoptera exigua larvae to Bacillus thuringiensis Cry1Ca. Ren XL; Ma Y; Cui JJ; Li GQ J Insect Physiol; 2014 Aug; 67():28-36. PubMed ID: 24932922 [TBL] [Abstract][Full Text] [Related]
11. Optimization of recombinant bacteria expressing dsRNA to enhance insecticidal activity against a lepidopteran insect, Spodoptera exigua. Vatanparast M; Kim Y PLoS One; 2017; 12(8):e0183054. PubMed ID: 28800614 [TBL] [Abstract][Full Text] [Related]
12. Identification of four caspase genes from Spodoptera exigua (Lepidoptera: Noctuidae) and their regulations toward different apoptotic stimulations. Yu H; Li ZQ; Ou-Yang YY; Huang GH Insect Sci; 2020 Dec; 27(6):1158-1172. PubMed ID: 31793737 [TBL] [Abstract][Full Text] [Related]
13. Prostaglandin mediates down-regulation of phenoloxidase activation of Spodoptera exigua via plasmatocyte-spreading peptide-binding protein. Park J; Kim Y Arch Insect Biochem Physiol; 2014 Apr; 85(4):234-47. PubMed ID: 24615993 [TBL] [Abstract][Full Text] [Related]
14. RNA interference of β1 integrin subunit impairs development and immune responses of the beet armyworm, Spodoptera exigua. Surakasi VP; Mohamed AA; Kim Y J Insect Physiol; 2011 Nov; 57(11):1537-44. PubMed ID: 21856307 [TBL] [Abstract][Full Text] [Related]
16. Host-range expansion of Spodoptera exigua multiple nucleopolyhedrovirus to Agrotis segetum larvae when the midgut is bypassed. Jakubowska AK; Lynn DE; Herrero S; Vlak JM; van Oers MM J Gen Virol; 2010 Apr; 91(Pt 4):898-906. PubMed ID: 19923260 [TBL] [Abstract][Full Text] [Related]
17. Susceptibility of Spodoptera frugiperda and S. exigua to Bacillus thuringiensis Vip3Aa insecticidal protein. Chakroun M; Bel Y; Caccia S; Abdelkefi-Mesrati L; Escriche B; Ferré J J Invertebr Pathol; 2012 Jul; 110(3):334-9. PubMed ID: 22465567 [TBL] [Abstract][Full Text] [Related]
18. RNAi-mediated knockdown of a Spodoptera frugiperda trypsin-like serine-protease gene reduces susceptibility to a Bacillus thuringiensis Cry1Ca1 protoxin. Rodríguez-Cabrera L; Trujillo-Bacallao D; Borrás-Hidalgo O; Wright DJ; Ayra-Pardo C Environ Microbiol; 2010 Nov; 12(11):2894-903. PubMed ID: 20545748 [TBL] [Abstract][Full Text] [Related]
19. Gene knockout demonstrates that vip3A contributes to the pathogenesis of Bacillus thuringiensis toward Agrotis ipsilon and Spodoptera exigua. Donovan WP; Donovan JC; Engleman JT J Invertebr Pathol; 2001 Jul; 78(1):45-51. PubMed ID: 11500093 [TBL] [Abstract][Full Text] [Related]
20. An entomopathogenic bacterium, Xenorhabdus nematophila, inhibits the expression of an antibacterial peptide, cecropin, of the beet armyworm, Spodoptera exigua. Ji D; Kim Y J Insect Physiol; 2004 Jun; 50(6):489-96. PubMed ID: 15183278 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]