BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 22565094)

  • 1. Integrated detection of intrinsic fluorophores in live microbial cells using an array of thin film amorphous silicon photodetectors.
    Jóskowiak A; Stasio N; Chu V; Prazeres DM; Conde JP
    Biosens Bioelectron; 2012; 36(1):242-9. PubMed ID: 22565094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Fluorescence spectral characteristics of human blood and its endogenous fluorophores].
    Li BH; Zhang ZX; Xie SS; Chen R
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Jul; 26(7):1310-3. PubMed ID: 17020047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo monitoring the changes of interstitial pH and FAD/NADH ratio by fluorescence spectroscopy in healing skin wounds.
    Mokrý M; Gál P; Vidinský B; Kusnír J; Dubayová K; Mozes S; Sabo J
    Photochem Photobiol; 2006; 82(3):793-7. PubMed ID: 16435883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification by fluorescence spectroscopy of lactic acid bacteria isolated from a small-scale facility producing traditional dry sausages.
    Ammor S; Yaakoubi K; Chevallier I; Dufour E
    J Microbiol Methods; 2004 Nov; 59(2):271-81. PubMed ID: 15369863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ fluorescence cell mass measurements of Saccharomyces cerevisiae using cellular tryptophan.
    Horvath JJ; Glazier SA; Spangler CJ
    Biotechnol Prog; 1993; 9(6):666-70. PubMed ID: 7764356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A technique for correction of attenuations in synchronous fluorescence spectroscopy.
    Devi S; Ghosh N; Pradhan A
    J Photochem Photobiol B; 2015 Oct; 151():1-9. PubMed ID: 26134713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring cell concentration and activity by multiple excitation fluorometry.
    Li JK; Asali EC; Humphrey AE; Horvath JJ
    Biotechnol Prog; 1991; 7(1):21-7. PubMed ID: 1366978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation of flavins and nicotinamide cofactors in Chinese hamster ovary cells by capillary electrophoresis.
    Li Y; de Silva PG; Xi L; van Winkle A; Lin JJ; Ahmed S; Geng ML
    Biomed Chromatogr; 2008 Dec; 22(12):1374-84. PubMed ID: 18814195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation coefficient mapping in fluorescence spectroscopy: tissue classification for cancer detection.
    Crowell E; Wang G; Cox J; Platz CP; Geng L
    Anal Chem; 2005 Mar; 77(5):1368-75. PubMed ID: 15732920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An improved multichannel high-speed spectrophotometer for fluorescence spectroscopy applications.
    Parsons B; Kent R; Cooper G
    Biomed Sci Technol; 1992; 1(3):74-83. PubMed ID: 10147526
    [No Abstract]   [Full Text] [Related]  

  • 11. pH-induced changes in activity and conformation of NADH oxidase from Thermus thermophilus.
    Zoldák G; Musatov A; Stupák M; Sprinzl M; Sedlák E
    Gen Physiol Biophys; 2005 Sep; 24(3):279-98. PubMed ID: 16308424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Determination of the fluorescence intensity of coenzymes NADH and FAD in the skeletal muscle of the rat depending on the post-mortem interval].
    Babkina AS; Sundukov DV; Golubev AM; Ryzhkov IA; Tsokolaeva ZI; Zarzhetsky YV
    Sud Med Ekspert; 2020; 63(1):31-35. PubMed ID: 32040085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Study on multi-photon excited fluorescence combined with capillary electrophoresis].
    Sun YX; Zhu F; Ma WY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Apr; 25(4):502-5. PubMed ID: 16097670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating Cell Metabolism Through Autofluorescence Imaging of NAD(P)H and FAD.
    Kolenc OI; Quinn KP
    Antioxid Redox Signal; 2019 Feb; 30(6):875-889. PubMed ID: 29268621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of endogenous fluorescence in nonsmall lung cancerous cells: A comparison with nonmalignant lung normal cells.
    Awasthi K; Chang FL; Hsieh PY; Hsu HY; Ohta N
    J Biophotonics; 2020 May; 13(5):e201960210. PubMed ID: 32067342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Label-Free Fluorescence Spectroscopy for Detecting Key Biomolecules in Brain Tissue from a Mouse Model of Alzheimer's Disease.
    Shi L; Lu L; Harvey G; Harvey T; Rodríguez-Contreras A; Alfano RR
    Sci Rep; 2017 Jun; 7(1):2599. PubMed ID: 28572632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultraviolet-induced autofluorescence characterization of normal and tumoral esophageal epithelium cells with quantitation of NAD(P)H.
    Villette S; Pigaglio-Deshayes S; Vever-Bizet C; Validire P; Bourg-Heckly G
    Photochem Photobiol Sci; 2006 May; 5(5):483-92. PubMed ID: 16685326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ multi-wavelength fluorescence spectroscopy as effective tool to simultaneously monitor spore germination, metabolic activity and quantitative protein production in recombinant Aspergillus niger fed-batch cultures.
    Ganzlin M; Marose S; Lu X; Hitzmann B; Scheper T; Rinas U
    J Biotechnol; 2007 Dec; 132(4):461-8. PubMed ID: 17905460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A pulse fluorometry study of lipoamide dehydrogenase. Evidence for non-equivalent FAD centers.
    Wahl P; Auchet JC; Visser AJ; Veeger C
    Eur J Biochem; 1975 Jan; 50(2):413-8. PubMed ID: 1168573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterizing the extracellular and intracellular fluorescent products of activated sludge in a sequencing batch reactor.
    Li WH; Sheng GP; Liu XW; Yu HQ
    Water Res; 2008 Jun; 42(12):3173-81. PubMed ID: 18423798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.