These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 22565243)
1. Emerging technologies for removing nonpoint phosphorus from surface water and groundwater: introduction. Buda AR; Koopmans GF; Bryant RB; Chardon WJ J Environ Qual; 2012; 41(3):621-7. PubMed ID: 22565243 [TBL] [Abstract][Full Text] [Related]
2. Use of reactive materials to bind phosphorus. Chardon WJ; Groenenberg JE; Temminghoff EJ; Koopmans GF J Environ Qual; 2012; 41(3):636-46. PubMed ID: 22565245 [TBL] [Abstract][Full Text] [Related]
3. Phosphorus removal with by-products in a flow-through setting. Stoner D; Penn C; McGrath J; Warren J J Environ Qual; 2012; 41(3):654-63. PubMed ID: 22565247 [TBL] [Abstract][Full Text] [Related]
4. Managing agricultural phosphorus for water quality: lessons from the USA and China. Sharpley A; Wang X J Environ Sci (China); 2014 Sep; 26(9):1770-82. PubMed ID: 25193824 [TBL] [Abstract][Full Text] [Related]
5. Phosphorus removal by the multipond system sediments receiving agricultural drainage in a headstream watershed. Fu Q; Yin CQ; Ma Y J Environ Sci (China); 2005; 17(3):404-8. PubMed ID: 16083112 [TBL] [Abstract][Full Text] [Related]
6. Assessment of physical techniques to regenerate active slag filters removing phosphorus from wastewater. Pratt C; Shilton A; Haverkamp RG; Pratt S Water Res; 2009 Feb; 43(2):277-82. PubMed ID: 18976787 [TBL] [Abstract][Full Text] [Related]
7. Using flue gas desulfurization gypsum to remove dissolved phosphorus from agricultural drainage waters. Bryant RB; Buda AR; Kleinman PJ; Church CD; Saporito LS; Folmar GJ; Bose S; Allen AL J Environ Qual; 2012; 41(3):664-71. PubMed ID: 22565248 [TBL] [Abstract][Full Text] [Related]
8. Determining phosphorus and sediment release rates from five Irish tillage soils. Regan JT; Rodgers M; Healy MG; Kirwan L; Fenton O J Environ Qual; 2010; 39(1):185-92. PubMed ID: 20048306 [TBL] [Abstract][Full Text] [Related]
9. Groundwater remediation: the next 30 years. Hadley PW; Newell CJ Ground Water; 2012; 50(5):669-78. PubMed ID: 22612359 [TBL] [Abstract][Full Text] [Related]
10. Nonpoint-source nitrogen and phosphorus behavior and modeling in cold climate: a review. Han CW; Xu SG; Liu JW; Lian JJ Water Sci Technol; 2010; 62(10):2277-85. PubMed ID: 21076213 [TBL] [Abstract][Full Text] [Related]
11. Phosphorus retention in filter materials for wastewater treatment and its subsequent suitability for plant production. Hylander LD; Kietlińska A; Renman G; Simán G Bioresour Technol; 2006 May; 97(7):914-21. PubMed ID: 15964189 [TBL] [Abstract][Full Text] [Related]
12. Modeling watershed-scale effectiveness of agricultural best management practices to reduce phosphorus loading. Rao NS; Easton ZM; Schneiderman EM; Zion MS; Lee DR; Steenhuis TS J Environ Manage; 2009 Mar; 90(3):1385-95. PubMed ID: 19008034 [TBL] [Abstract][Full Text] [Related]
13. Cost assessment and ecological effectiveness of nutrient reduction options for mitigating Phaeocystis colony blooms in the Southern North Sea: an integrated modeling approach. Lancelot C; Thieu V; Polard A; Garnier J; Billen G; Hecq W; Gypens N Sci Total Environ; 2011 May; 409(11):2179-91. PubMed ID: 21439607 [TBL] [Abstract][Full Text] [Related]
14. Source-pathway separation of multiple contaminants during a rainfall-runoff event in an artificially drained agricultural watershed. Tomer MD; Wilson CG; Moorman TB; Cole KJ; Heer D; Isenhart TM J Environ Qual; 2010; 39(3):882-95. PubMed ID: 20400584 [TBL] [Abstract][Full Text] [Related]
15. Toward quantifying water pollution abatement in response to installing buffers on crop land. Dosskey MG Environ Manage; 2001 Nov; 28(5):577-98. PubMed ID: 11568840 [TBL] [Abstract][Full Text] [Related]
16. Dynamic phosphorus mass balance modeling of large watersheds: long-term implications of management strategies. Cassell EA; Kort RL; Meals DW; Aschmann SG; Dorioz JM; Anderson DP Water Sci Technol; 2001; 43(5):153-62. PubMed ID: 11379127 [TBL] [Abstract][Full Text] [Related]
17. Removal of phosphorus from agricultural wastewaters using adsorption media prepared from acid mine drainage sludge. Sibrell PL; Montgomery GA; Ritenour KL; Tucker TW Water Res; 2009 May; 43(8):2240-50. PubMed ID: 19269663 [TBL] [Abstract][Full Text] [Related]
18. Reducing phosphorus (P) losses from drained agricultural fields with iron coated sand (- glauconite) filters. Vandermoere S; Ralaizafisoloarivony NA; Van Ranst E; De Neve S Water Res; 2018 Sep; 141():329-339. PubMed ID: 29804019 [TBL] [Abstract][Full Text] [Related]
19. Apatite as an interesting seed to remove phosphorus from wastewater in constructed wetlands. Molle P; Liénard A; Grasmick A; Iwema A; Kabbabi A Water Sci Technol; 2005; 51(9):193-203. PubMed ID: 16042259 [TBL] [Abstract][Full Text] [Related]
20. Agricultural drainage ditches mitigate phosphorus loads as a function of hydrological variability. Kröger R; Holland MM; Moore MT; Cooper CM J Environ Qual; 2008; 37(1):107-13. PubMed ID: 18178883 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]