These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 22565247)

  • 1. Phosphorus removal with by-products in a flow-through setting.
    Stoner D; Penn C; McGrath J; Warren J
    J Environ Qual; 2012; 41(3):654-63. PubMed ID: 22565247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trapping phosphorus in runoff with a phosphorus removal structure.
    Penn CJ; McGrath JM; Rounds E; Fox G; Heeren D
    J Environ Qual; 2012; 41(3):672-9. PubMed ID: 22565249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nutrient and dissolved organic carbon removal from natural waters using industrial by-products.
    Wendling LA; Douglas GB; Coleman S; Yuan Z
    Sci Total Environ; 2013 Jan; 442():63-72. PubMed ID: 23178765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using flue gas desulfurization gypsum to remove dissolved phosphorus from agricultural drainage waters.
    Bryant RB; Buda AR; Kleinman PJ; Church CD; Saporito LS; Folmar GJ; Bose S; Allen AL
    J Environ Qual; 2012; 41(3):664-71. PubMed ID: 22565248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of reactive materials to bind phosphorus.
    Chardon WJ; Groenenberg JE; Temminghoff EJ; Koopmans GF
    J Environ Qual; 2012; 41(3):636-46. PubMed ID: 22565245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of blast furnace granulated slag as a substrate in vertical flow reed beds: field application.
    Asuman Korkusuz E; Beklioğlu M; Demirer GN
    Bioresour Technol; 2007 Aug; 98(11):2089-101. PubMed ID: 17070037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wastewater treatment by soil infiltration: Long-term phosphorus removal.
    Eveborn D; Kong D; Gustafsson JP
    J Contam Hydrol; 2012 Oct; 140-141():24-33. PubMed ID: 22982614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of a universal flow-through model for predicting and designing phosphorus removal structures.
    Penn C; Bowen J; McGrath J; Nairn R; Fox G; Brown G; Wilson S; Gill C
    Chemosphere; 2016 May; 151():345-55. PubMed ID: 26950026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrated calcareous oil-shale ash as potential filter media for phosphorus removal in constructed wetlands.
    Kaasik A; Vohla C; Mõtlep R; Mander U; Kirsimäe K
    Water Res; 2008 Feb; 42(4-5):1315-23. PubMed ID: 17959214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of phosphorus sorption onto light expanded clay aggregates by means of aluminum and iron oxide coatings.
    Yaghi N; Hartikainen H
    Chemosphere; 2013 Nov; 93(9):1879-86. PubMed ID: 23866174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on the phosphorus sorption capacity of substrates used in constructed wetland systems.
    Xu D; Xu J; Wu J; Muhammad A
    Chemosphere; 2006 Apr; 63(2):344-52. PubMed ID: 16242173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Apatite as an interesting seed to remove phosphorus from wastewater in constructed wetlands.
    Molle P; Liénard A; Grasmick A; Iwema A; Kabbabi A
    Water Sci Technol; 2005; 51(9):193-203. PubMed ID: 16042259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorus sorption capacities and physicochemical properties of nine substrate materials for constructed wetland.
    Cui L; Zhu X; Ma M; Ouyang Y; Dong M; Zhu W; Luo S
    Arch Environ Contam Toxicol; 2008 Aug; 55(2):210-7. PubMed ID: 18175159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A method for determining the phosphorus sorption capacity and amorphous aluminum of aluminum-based drinking water treatment residuals.
    Dayton EA; Basta NT
    J Environ Qual; 2005; 34(3):1112-8. PubMed ID: 15888897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphate immobilization from aqueous solution by fly ashes in relation to their composition.
    Chen J; Kong H; Wu D; Chen X; Zhang D; Sun Z
    J Hazard Mater; 2007 Jan; 139(2):293-300. PubMed ID: 16860931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sorption and desorption of phosphorus by shale: batch and column studies.
    Cyrus JS; Reddy GB
    Water Sci Technol; 2010; 61(3):599-606. PubMed ID: 20150695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emerging technologies for removing nonpoint phosphorus from surface water and groundwater: introduction.
    Buda AR; Koopmans GF; Bryant RB; Chardon WJ
    J Environ Qual; 2012; 41(3):621-7. PubMed ID: 22565243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sorption of aqueous phosphorus onto bituminous and lignitous coal ashes.
    Yan J; Kirk DW; Jia CQ; Liu X
    J Hazard Mater; 2007 Sep; 148(1-2):395-401. PubMed ID: 17400372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suitability of adsorption isotherms for predicting the retention capacity of active slag filters removing phosphorus from wastewater.
    Pratt C; Shilton A
    Water Sci Technol; 2009; 59(8):1673-8. PubMed ID: 19403982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Converter slag-coal cinder columns for the removal of phosphorous and other pollutants.
    Yang J; Wang S; Lu Z; Yang J; Lou S
    J Hazard Mater; 2009 Aug; 168(1):331-7. PubMed ID: 19286316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.