BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 22565548)

  • 1. Multi-layered hypertrophied MEE formation by microtubule disruption via GEF-H1/RhoA/ROCK signaling pathway.
    Kitase Y; Shuler CF
    Dev Dyn; 2012 Jul; 241(7):1169-82. PubMed ID: 22565548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microtubule disassembly prevents palatal fusion and alters regulation of the E-cadherin/catenin complex.
    Kitase Y; Shuler CF
    Int J Dev Biol; 2013; 57(1):55-60. PubMed ID: 23585353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell autonomous requirement for Tgfbr2 in the disappearance of medial edge epithelium during palatal fusion.
    Xu X; Han J; Ito Y; Bringas P; Urata MM; Chai Y
    Dev Biol; 2006 Sep; 297(1):238-48. PubMed ID: 16780827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TGF-beta(3)-induced chondroitin sulphate proteoglycan mediates palatal shelf adhesion.
    Gato A; Martinez ML; Tudela C; Alonso I; Moro JA; Formoso MA; Ferguson MW; Martínez-Alvarez C
    Dev Biol; 2002 Oct; 250(2):393-405. PubMed ID: 12376112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enteropathogenic Escherichia coli activates the RhoA signaling pathway via the stimulation of GEF-H1.
    Matsuzawa T; Kuwae A; Yoshida S; Sasakawa C; Abe A
    EMBO J; 2004 Sep; 23(17):3570-82. PubMed ID: 15318166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GEF-H1 couples nocodazole-induced microtubule disassembly to cell contractility via RhoA.
    Chang YC; Nalbant P; Birkenfeld J; Chang ZF; Bokoch GM
    Mol Biol Cell; 2008 May; 19(5):2147-53. PubMed ID: 18287519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Guanine nucleotide exchange factor-H1 signaling is involved in lipopolysaccharide-induced endothelial barrier dysfunction.
    Zhou Z; Guo F; Dou Y; Tang J; Huan J
    Surgery; 2013 Sep; 154(3):621-31. PubMed ID: 23859306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transforming growth factor beta (TGFbeta) signalling in palatal growth, apoptosis and epithelial mesenchymal transformation (EMT).
    Nawshad A; LaGamba D; Hay ED
    Arch Oral Biol; 2004 Sep; 49(9):675-89. PubMed ID: 15275855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Medial edge epithelial cell fate during palatal fusion.
    Martínez-Alvarez C; Tudela C; Pérez-Miguelsanz J; O'Kane S; Puerta J; Ferguson MW
    Dev Biol; 2000 Apr; 220(2):343-57. PubMed ID: 10753521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overexpression of Smad2 in Tgf-beta3-null mutant mice rescues cleft palate.
    Cui XM; Shiomi N; Chen J; Saito T; Yamamoto T; Ito Y; Bringas P; Chai Y; Shuler CF
    Dev Biol; 2005 Feb; 278(1):193-202. PubMed ID: 15649471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GEF-H1-RhoA signaling pathway mediates LPS-induced NF-κB transactivation and IL-8 synthesis in endothelial cells.
    Guo F; Tang J; Zhou Z; Dou Y; Van Lonkhuyzen D; Gao C; Huan J
    Mol Immunol; 2012 Feb; 50(1-2):98-107. PubMed ID: 22226472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TGF-beta3 is required for the adhesion and intercalation of medial edge epithelial cells during palate fusion.
    Tudela C; Formoso MA; Martínez T; Pérez R; Aparicio M; Maestro C; Del Río A; Martínez E; Ferguson M; Martínez-Alvarez C
    Int J Dev Biol; 2002 May; 46(3):333-6. PubMed ID: 12068957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TGF-beta3-dependent SMAD2 phosphorylation and inhibition of MEE proliferation during palatal fusion.
    Cui XM; Chai Y; Chen J; Yamamoto T; Ito Y; Bringas P; Shuler CF
    Dev Dyn; 2003 Jul; 227(3):387-94. PubMed ID: 12815624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of SMAD2 expression prevents murine palatal fusion.
    Shiomi N; Cui XM; Yamamoto T; Saito T; Shuler CF
    Dev Dyn; 2006 Jul; 235(7):1785-93. PubMed ID: 16607645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conditional inactivation of Tgfbr2 in cranial neural crest causes cleft palate and calvaria defects.
    Ito Y; Yeo JY; Chytil A; Han J; Bringas P; Nakajima A; Shuler CF; Moses HL; Chai Y
    Development; 2003 Nov; 130(21):5269-80. PubMed ID: 12975342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of N'-nitrosonornicotine (NNN) on murine palatal fusion in vitro.
    Saito T; Cui XM; Yamamoto T; Shiomi N; Bringas P; Shuler CF
    Toxicology; 2005 Feb; 207(3):475-85. PubMed ID: 15664274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathogenesis of cleft palate in TGF-beta3 knockout mice.
    Taya Y; O'Kane S; Ferguson MW
    Development; 1999 Sep; 126(17):3869-79. PubMed ID: 10433915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleotide exchange factor GEF-H1 mediates cross-talk between microtubules and the actin cytoskeleton.
    Krendel M; Zenke FT; Bokoch GM
    Nat Cell Biol; 2002 Apr; 4(4):294-301. PubMed ID: 11912491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Runx1 is involved in the fusion of the primary and the secondary palatal shelves.
    Charoenchaikorn K; Yokomizo T; Rice DP; Honjo T; Matsuzaki K; Shintaku Y; Imai Y; Wakamatsu A; Takahashi S; Ito Y; Takano-Yamamoto T; Thesleff I; Yamamoto M; Yamashiro T
    Dev Biol; 2009 Feb; 326(2):392-402. PubMed ID: 19000669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GEF-H1/RhoA signalling pathway mediates lipopolysaccharide-induced intercellular adhesion molecular-1 expression in endothelial cells via activation of p38 and NF-κB.
    Guo F; Zhou Z; Dou Y; Tang J; Gao C; Huan J
    Cytokine; 2012 Mar; 57(3):417-28. PubMed ID: 22226621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.