These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 22565683)

  • 1. Impact of amplified spontaneous emission on Brillouin scattering of a single-frequency signal.
    Karow M; Neumann J; Kracht D; Weßels P
    Opt Express; 2012 May; 20(10):10572-82. PubMed ID: 22565683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Double Brillouin frequency shift through circulation of odd-order Stokes signal.
    Shee YG; Al-Mansoori MH; Ismail A; Hitam S; Mahdi MA
    Appl Opt; 2010 Jul; 49(20):3956-9. PubMed ID: 20648173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-frequency Brillouin distributed feedback fiber laser.
    Abedin KS; Westbrook PS; Nicholson JW; Porque J; Kremp T; Liu X
    Opt Lett; 2012 Feb; 37(4):605-7. PubMed ID: 22344121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 18 W single-stage single-frequency acoustically tailored Raman fiber amplifier.
    Vergien C; Dajani I; Robin C
    Opt Lett; 2012 May; 37(10):1766-8. PubMed ID: 22627564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High power narrow-band fiber-based ASE source.
    Schmidt O; Rekas M; Wirth C; Rothhardt J; Rhein S; Kliner A; Strecker M; Schreiber T; Limpert J; Eberhardt R; Tünnermann A
    Opt Express; 2011 Feb; 19(5):4421-7. PubMed ID: 21369273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of Rayleigh backscattering on Stimulated Brillouin Scattering threshold evaluation for 10 Gb/s NRZ-OOK signals.
    Ferrario M; Marazzi L; Boffi P; Righetti A; Martinelli M
    Opt Express; 2009 Sep; 17(20):18110-5. PubMed ID: 19907601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiwavelength Brillouin-erbium fiber laser with double-Brillouin-frequency spacing.
    Shee YG; Al-Mansoori MH; Ismail A; Hitam S; Mahdi MA
    Opt Express; 2011 Jan; 19(3):1699-706. PubMed ID: 21368983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristics of a Brillouin-erbium fiber laser based on Brillouin pump preamplification.
    Zhou H; Sun C; Chen M; Chen W; Meng Z
    Appl Opt; 2012 Oct; 51(29):7046-51. PubMed ID: 23052084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of pump recycling technique on stimulated Brillouin scattering threshold: a theoretical model.
    Al-Asadi HA; Al-Mansoori MH; Ajiya M; Hitam S; Saripan MI; Mahdi MA
    Opt Express; 2010 Oct; 18(21):22339-47. PubMed ID: 20941134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-peak-power nanosecond pulse generation by stimulated Brillouin scattering pulse compression in a seeded Yb-doped fiber amplifier.
    Laroche M; Gilles H; Girard S
    Opt Lett; 2011 Jan; 36(2):241-3. PubMed ID: 21263513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and brillouin scattering.
    Smith RG
    Appl Opt; 1972 Nov; 11(11):2489-94. PubMed ID: 20119362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brillouin scattering spectra in high-power single-frequency ytterbium doped fiber amplifiers.
    Hildebrandt M; Büsche S; Wessels P; Frede M; Kracht D
    Opt Express; 2008 Sep; 16(20):15970-9. PubMed ID: 18825235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On-chip stimulated Brillouin scattering.
    Pant R; Poulton CG; Choi DY; Mcfarlane H; Hile S; Li E; Thevenaz L; Luther-Davies B; Madden SJ; Eggleton BJ
    Opt Express; 2011 Apr; 19(9):8285-90. PubMed ID: 21643078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimulated Brillouin scattering suppression through laser gain competition: scalability to high power.
    Dajani I; Zeringue C; Lu C; Vergien C; Henry L; Robin C
    Opt Lett; 2010 Sep; 35(18):3114-6. PubMed ID: 20847796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brillouin optical correlation domain analysis with 4 millimeter resolution based on amplified spontaneous emission.
    Cohen R; London Y; Antman Y; Zadok A
    Opt Express; 2014 May; 22(10):12070-8. PubMed ID: 24921326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics of multiwavelength L-band Brillouin-Raman fiber laser under forward and backward pumped environment.
    Abass AK; Al-Mansoori MH; Jamaludin MZ; Abdullah F; Al-Mashhadani TF
    Appl Opt; 2013 Jun; 52(16):3764-9. PubMed ID: 23736332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimulated Brillouin scattering in single-frequency fiber amplifiers with delivery fibers.
    Liu A
    Opt Express; 2009 Aug; 17(17):15201-9. PubMed ID: 19687998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cavity enhanced stimulated Brillouin scattering in an optical chip for multiorder Stokes generation.
    Pant R; Li E; Choi DY; Poulton CG; Madden SJ; Luther-Davies B; Eggleton BJ
    Opt Lett; 2011 Sep; 36(18):3687-9. PubMed ID: 21931433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical analysis of single-frequency Raman fiber amplifier system operating at 1178 nm.
    Vergien C; Dajani I; Zeringue C
    Opt Express; 2010 Dec; 18(25):26214-28. PubMed ID: 21164971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pump wavelength dependence of ASE and SBS in single-frequency EYDFAs.
    Booker P; Caspary R; Neumann J; Kracht D; Steinke M
    Opt Lett; 2018 Oct; 43(19):4647-4650. PubMed ID: 30272704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.