These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 22565815)

  • 1. The multi-scale modelling of coronary blood flow.
    Lee J; Smith NP
    Ann Biomed Eng; 2012 Nov; 40(11):2399-413. PubMed ID: 22565815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiscale model of the physiological control of myocardial perfusion to delineate putative metabolic feedback mechanisms.
    Gharahi H; Figueroa CA; Tune JD; Beard DA
    J Physiol; 2022 Apr; 600(8):1913-1932. PubMed ID: 35156733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel porous mechanical framework for modelling the interaction between coronary perfusion and myocardial mechanics.
    Cookson AN; Lee J; Michler C; Chabiniok R; Hyde E; Nordsletten DA; Sinclair M; Siebes M; Smith NP
    J Biomech; 2012 Mar; 45(5):850-5. PubMed ID: 22154392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical analysis of blood flow through a stenosed artery using a coupled, multiscale simulation method.
    Shim EB; Kamm RD; Heldt T; Mark RG
    Comput Cardiol; 2000; 27():219-22. PubMed ID: 12085933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico coronary wave intensity analysis: application of an integrated one-dimensional and poromechanical model of cardiac perfusion.
    Lee J; Nordsletten D; Cookson A; Rivolo S; Smith N
    Biomech Model Mechanobiol; 2016 Dec; 15(6):1535-1555. PubMed ID: 27008197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homogenization modeling for the mechanics of perfused myocardium.
    May-Newman K; McCulloch AD
    Prog Biophys Mol Biol; 1998; 69(2-3):463-81. PubMed ID: 9785951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling multi-physics models to cardiac mechanics.
    Nordsletten DA; Niederer SA; Nash MP; Hunter PJ; Smith NP
    Prog Biophys Mol Biol; 2011 Jan; 104(1-3):77-88. PubMed ID: 19917304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On a sparse pressure-flow rate condensation of rigid circulation models.
    Schiavazzi DE; Hsia TY; Marsden AL
    J Biomech; 2016 Jul; 49(11):2174-2186. PubMed ID: 26671219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scalability and in vivo validation of a multiscale numerical model of the left coronary circulation.
    Mynard JP; Penny DJ; Smolich JJ
    Am J Physiol Heart Circ Physiol; 2014 Feb; 306(4):H517-28. PubMed ID: 24363304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Review of cardiac-coronary interaction and insights from mathematical modeling.
    Fan L; Wang H; Kassab GS; Lee LC
    WIREs Mech Dis; 2024; 16(3):e1642. PubMed ID: 38316634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Partitioned fluid-solid coupling for cardiovascular blood flow: left-ventricular fluid mechanics.
    Krittian S; Janoske U; Oertel H; Böhlke T
    Ann Biomed Eng; 2010 Apr; 38(4):1426-41. PubMed ID: 20058187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Myocardial microcirculation in humans--new approaches using MRI].
    Wacker CM; Bauer WR
    Herz; 2003 Mar; 28(2):74-81. PubMed ID: 12669220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Review of zero-D and 1-D models of blood flow in the cardiovascular system.
    Shi Y; Lawford P; Hose R
    Biomed Eng Online; 2011 Apr; 10():33. PubMed ID: 21521508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An integrated model of LV muscle mechanics, coronary flow, and fluid and mass transport.
    Zinemanas D; Beyar R; Sideman S
    Am J Physiol; 1995 Feb; 268(2 Pt 2):H633-45. PubMed ID: 7864189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new synergistic model for simulating exercise incorporating control mechanisms at cellular and organ scales.
    Pearce NF; Kim EJ
    Comput Biol Med; 2023 Sep; 163():107141. PubMed ID: 37327758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical models for coronary vascular biomechanics: progress & challenges.
    Waters SL; Alastruey J; Beard DA; Bovendeerd PH; Davies PF; Jayaraman G; Jensen OE; Lee J; Parker KH; Popel AS; Secomb TW; Siebes M; Sherwin SJ; Shipley RJ; Smith NP; van de Vosse FN
    Prog Biophys Mol Biol; 2011 Jan; 104(1-3):49-76. PubMed ID: 21040741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lumped flow modeling in dynamically loaded coronary vessels.
    Jacobs J; Algranati D; Lanir Y
    J Biomech Eng; 2008 Oct; 130(5):054504. PubMed ID: 19045528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mathematical model of the flow of blood through the left coronary artery.
    Guiot C; Piantà PG
    Cardioscience; 1991 Sep; 2(3):181-4. PubMed ID: 1742467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multi-scale model of the coronary circulation applied to investigate transmural myocardial flow.
    Ge X; Yin Z; Fan Y; Vassilevski Y; Liang F
    Int J Numer Method Biomed Eng; 2018 Oct; 34(10):e3123. PubMed ID: 29947132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative evaluation of regional myocardial perfusion using fast X-ray computed tomography.
    Schmermund A; Bell MR; Lerman LO; Ritman EL; Rumberger JA
    Herz; 1997 Feb; 22(1):29-39. PubMed ID: 9088938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.