BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 22566363)

  • 1. Polymer-based scaffold designs for in situ vascular tissue engineering: controlling recruitment and differentiation behavior of endothelial colony forming cells.
    Fioretta ES; Fledderus JO; Burakowska-Meise EA; Baaijens FP; Verhaar MC; Bouten CV
    Macromol Biosci; 2012 May; 12(5):577-90. PubMed ID: 22566363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The promotion of endothelial progenitor cells recruitment by nerve growth factors in tissue-engineered blood vessels.
    Zeng W; Yuan W; Li L; Mi J; Xu S; Wen C; Zhou Z; Xiong J; Sun J; Ying D; Yang M; Li X; Zhu C
    Biomaterials; 2010 Mar; 31(7):1636-45. PubMed ID: 20006381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications.
    Sarkar S; Lee GY; Wong JY; Desai TA
    Biomaterials; 2006 Sep; 27(27):4775-82. PubMed ID: 16725195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A small diameter elastic blood vessel wall prepared under pulsatile conditions from polyglycolic acid mesh and smooth muscle cells differentiated from adipose-derived stem cells.
    Wang C; Cen L; Yin S; Liu Q; Liu W; Cao Y; Cui L
    Biomaterials; 2010 Feb; 31(4):621-30. PubMed ID: 19819545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human endothelial colony-forming cells expanded with an improved protocol are a useful endothelial cell source for scaffold-based tissue engineering.
    Denecke B; Horsch LD; Radtke S; Fischer JC; Horn PA; Giebel B
    J Tissue Eng Regen Med; 2015 Nov; 9(11):E84-97. PubMed ID: 23436759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preliminary experience with tissue engineering of a venous vascular patch by using bone marrow-derived cells and a hybrid biodegradable polymer scaffold.
    Cho SW; Jeon O; Lim JE; Gwak SJ; Kim SS; Choi CY; Kim DI; Kim BS
    J Vasc Surg; 2006 Dec; 44(6):1329-40. PubMed ID: 17145438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Application of endothelial progenitor cells in vascular tissue engineering].
    Zhao Y; Xu Z; Cai S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Apr; 25(2):476-8. PubMed ID: 18610646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human vascular smooth muscle cells and endothelial cells cocultured on polyglycolic acid (70/30) scaffold in tissue engineered vascular graft.
    Wen SJ; Zhao LM; Wang SG; Li JX; Chen HY; Liu JL; Liu Y; Luo Y; Changizi R
    Chin Med J (Engl); 2007 Aug; 120(15):1331-5. PubMed ID: 17711739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fibronectin promotes VEGF-induced CD34 cell differentiation into endothelial cells.
    Wijelath ES; Rahman S; Murray J; Patel Y; Savidge G; Sobel M
    J Vasc Surg; 2004 Mar; 39(3):655-60. PubMed ID: 14981463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human progenitor-derived endothelial cells vs. venous endothelial cells for vascular tissue engineering: an in vitro study.
    Thebaud NB; Bareille R; Remy M; Bourget C; Daculsi R; Bordenave L
    J Tissue Eng Regen Med; 2010 Aug; 4(6):473-84. PubMed ID: 20112278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and cell affinity of microtubular orientation-structured PLGA(70/30) blood vessel scaffold.
    Hu X; Shen H; Yang F; Bei J; Wang S
    Biomaterials; 2008 Jul; 29(21):3128-36. PubMed ID: 18439673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of a scaffold fabricated thermally from acetylated PLGA on the formation of engineered cartilage.
    Kang SW; Lee SJ; Kim JS; Choi EH; Cha BH; Shim JH; Cho DW; Lee SH
    Macromol Biosci; 2011 Feb; 11(2):267-74. PubMed ID: 21077228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of olfactory ensheathing cells with nerve repairing scaffolds.
    Wang Y; Wang Y; Yin Y; Li S; Yan Q; Wan Z; Han Y
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2009 May; 34(5):382-7. PubMed ID: 19483284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accelerated angiogenic host tissue response to poly(L-lactide-co-glycolide) scaffolds by vitalization with osteoblast-like cells.
    Tavassol F; Schumann P; Lindhorst D; Sinikovic B; Voss A; von See C; Kampmann A; Bormann KH; Carvalho C; Mülhaupt R; Harder Y; Laschke MW; Menger MD; Gellrich NC; Rücker M
    Tissue Eng Part A; 2010 Jul; 16(7):2265-79. PubMed ID: 20184434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering.
    Wang J; Yu X
    Acta Biomater; 2010 Aug; 6(8):3004-12. PubMed ID: 20144749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functionalization of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds via surface heparinization for bone tissue engineering.
    Jiang T; Khan Y; Nair LS; Abdel-Fattah WI; Laurencin CT
    J Biomed Mater Res A; 2010 Jun; 93(3):1193-208. PubMed ID: 19777575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro evaluation of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering.
    Jiang T; Abdel-Fattah WI; Laurencin CT
    Biomaterials; 2006 Oct; 27(28):4894-903. PubMed ID: 16762408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of substrate stiffness on circulating progenitor cell fate.
    Fioretta ES; Fledderus JO; Baaijens FP; Bouten CV
    J Biomech; 2012 Mar; 45(5):736-44. PubMed ID: 22169135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of endothelial progenitor cells in prevascularized bone tissue engineering: development of heterogeneous constructs.
    Fedorovich NE; Haverslag RT; Dhert WJ; Alblas J
    Tissue Eng Part A; 2010 Jul; 16(7):2355-67. PubMed ID: 20205515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Invited commentary.
    Golden MA
    J Vasc Surg; 2010 Jan; 51(1):183. PubMed ID: 20117501
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.