BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 22566663)

  • 1. Shifting hydrogen bonds may produce flexible transmembrane helices.
    Cao Z; Bowie JU
    Proc Natl Acad Sci U S A; 2012 May; 109(21):8121-6. PubMed ID: 22566663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proline residues in transmembrane alpha helices affect the folding of bacteriorhodopsin.
    Lu H; Marti T; Booth PJ
    J Mol Biol; 2001 Apr; 308(2):437-46. PubMed ID: 11327778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modest stabilization by most hydrogen-bonded side-chain interactions in membrane proteins.
    Joh NH; Min A; Faham S; Whitelegge JP; Yang D; Woods VL; Bowie JU
    Nature; 2008 Jun; 453(7199):1266-70. PubMed ID: 18500332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proline kinks in transmembrane alpha-helices.
    von Heijne G
    J Mol Biol; 1991 Apr; 218(3):499-503. PubMed ID: 2016741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unfolding pathways of individual bacteriorhodopsins.
    Oesterhelt F; Oesterhelt D; Pfeiffer M; Engel A; Gaub HE; Müller DJ
    Science; 2000 Apr; 288(5463):143-6. PubMed ID: 10753119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Backbone Hydrogen Bond Strengths Can Vary Widely in Transmembrane Helices.
    Cao Z; Hutchison JM; Sanders CR; Bowie JU
    J Am Chem Soc; 2017 Aug; 139(31):10742-10749. PubMed ID: 28692798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observation of helix associations for insertion of a retinal molecule and distortions of helix structures in bacteriorhodopsin.
    Urano R; Okamoto Y
    J Chem Phys; 2015 Dec; 143(23):235101. PubMed ID: 26696075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of proline residues in the dynamics of transmembrane helices: the case of bacteriorhodopsin.
    Perálvarez-Marín A; Bourdelande JL; Querol E; Padrós E
    Mol Membr Biol; 2006; 23(2):127-35. PubMed ID: 16754356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Packing of transmembrane helices in bacteriorhodopsin folding: structure and thermodynamics.
    Chen CC; Wei CC; Sun YC; Chen CM
    J Struct Biol; 2008 May; 162(2):237-47. PubMed ID: 18262435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of stand-alone polar residue on membrane protein stability and structure.
    Chang YC; Cao Z; Chen WT; Huang WC
    Biochim Biophys Acta Biomembr; 2024 Jun; 1866(5):184325. PubMed ID: 38653423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stable folding core in the folding transition state of an alpha-helical integral membrane protein.
    Curnow P; Di Bartolo ND; Moreton KM; Ajoje OO; Saggese NP; Booth PJ
    Proc Natl Acad Sci U S A; 2011 Aug; 108(34):14133-8. PubMed ID: 21831834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of proline-containing alpha-helix (helix F model of bacteriorhodopsin) by molecular dynamics studies.
    Sankararamakrishnan R; Vishveshwara S
    Proteins; 1993 Jan; 15(1):26-41. PubMed ID: 8451238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Helix kinks are equally prevalent in soluble and membrane proteins.
    Wilman HR; Shi J; Deane CM
    Proteins; 2014 Sep; 82(9):1960-70. PubMed ID: 24638929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proline substitutions are not easily accommodated in a membrane protein.
    Yohannan S; Yang D; Faham S; Boulting G; Whitelegge J; Bowie JU
    J Mol Biol; 2004 Jul; 341(1):1-6. PubMed ID: 15312757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uniformity, ideality, and hydrogen bonds in transmembrane alpha-helices.
    Kim S; Cross TA
    Biophys J; 2002 Oct; 83(4):2084-95. PubMed ID: 12324426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer simulations of membrane protein folding: structure and dynamics.
    Chen CM; Chen CC
    Biophys J; 2003 Mar; 84(3):1902-8. PubMed ID: 12609892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of proline on the thermostability of the active site and membrane arrangement of transmembrane proteins.
    Perálvarez-Marín A; Lórenz-Fonfría VA; Simón-Vázquez R; Gomariz M; Meseguer I; Querol E; Padrós E
    Biophys J; 2008 Nov; 95(9):4384-95. PubMed ID: 18658225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The contribution of C alpha-H...O hydrogen bonds to membrane protein stability depends on the position of the amide.
    Mottamal M; Lazaridis T
    Biochemistry; 2005 Feb; 44(5):1607-13. PubMed ID: 15683244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of the positioning of the seven transmembrane alpha-helices of bacteriorhodopsin. A molecular simulation study.
    Tuffery P; Etchebest C; Popot JL; Lavery R
    J Mol Biol; 1994 Mar; 236(4):1105-22. PubMed ID: 8120890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The contribution of a covalently bound cofactor to the folding and thermodynamic stability of an integral membrane protein.
    Curnow P; Booth PJ
    J Mol Biol; 2010 Nov; 403(4):630-42. PubMed ID: 20850459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.