BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 22566663)

  • 21. Structure and function in bacteriorhodopsin: the role of the interhelical loops in the folding and stability of bacteriorhodopsin.
    Kim JM; Booth PJ; Allen SJ; Khorana HG
    J Mol Biol; 2001 Apr; 308(2):409-22. PubMed ID: 11327776
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Residue-specific millisecond to microsecond fluctuations in bacteriorhodopsin induced by disrupted or disorganized two-dimensional crystalline lattice, through modified lipid-helix and helix-helix interactions, as revealed by 13C NMR.
    Saitô H; Tsuchida T; Ogawa K; Arakawa T; Yamaguchi S; Tuzi S
    Biochim Biophys Acta; 2002 Sep; 1565(1):97-106. PubMed ID: 12225857
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Free-energy changes of bacteriorhodopsin point mutants measured by single-molecule force spectroscopy.
    Jacobson DR; Perkins TT
    Proc Natl Acad Sci U S A; 2021 Mar; 118(13):. PubMed ID: 33753487
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinetics of an individual transmembrane helix during bacteriorhodopsin folding.
    Compton EL; Farmer NA; Lorch M; Mason JM; Moreton KM; Booth PJ
    J Mol Biol; 2006 Mar; 357(1):325-38. PubMed ID: 16426635
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Side-chain contributions to membrane protein structure and stability.
    Faham S; Yang D; Bare E; Yohannan S; Whitelegge JP; Bowie JU
    J Mol Biol; 2004 Jan; 335(1):297-305. PubMed ID: 14659758
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Suppressor mutation analysis of the sensory rhodopsin I-transducer complex: insights into the color-sensing mechanism.
    Jung KH; Spudich JL
    J Bacteriol; 1998 Apr; 180(8):2033-42. PubMed ID: 9555883
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Strength of Calpha-H...O=C hydrogen bonds in transmembrane proteins.
    Park H; Yoon J; Seok C
    J Phys Chem B; 2008 Jan; 112(3):1041-8. PubMed ID: 18154287
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Point mutations in membrane proteins reshape energy landscape and populate different unfolding pathways.
    Sapra KT; Balasubramanian GP; Labudde D; Bowie JU; Muller DJ
    J Mol Biol; 2008 Feb; 376(4):1076-90. PubMed ID: 18191146
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A C alpha-H...O hydrogen bond in a membrane protein is not stabilizing.
    Yohannan S; Faham S; Yang D; Grosfeld D; Chamberlain AK; Bowie JU
    J Am Chem Soc; 2004 Mar; 126(8):2284-5. PubMed ID: 14982414
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular dynamics of individual alpha-helices of bacteriorhodopsin in dimyristol phosphatidylocholine. I. Structure and dynamics.
    Woolf TB
    Biophys J; 1997 Nov; 73(5):2376-92. PubMed ID: 9370432
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Helical reorganization in the context of membrane protein folding: Insights from simulations with bacteriorhodopsin (BR) fragments.
    Chatterjee H; Mahapatra AJ; Zacharias M; Sengupta N
    Biochim Biophys Acta Biomembr; 2024 Jun; 1866(5):184333. PubMed ID: 38740122
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Crystal structure of Escherichia coli-expressed Haloarcula marismortui bacteriorhodopsin I in the trimeric form.
    Shevchenko V; Gushchin I; Polovinkin V; Round E; Borshchevskiy V; Utrobin P; Popov A; Balandin T; Büldt G; Gordeliy V
    PLoS One; 2014; 9(12):e112873. PubMed ID: 25479443
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural determinants of transmembrane helical proteins.
    Harrington SE; Ben-Tal N
    Structure; 2009 Aug; 17(8):1092-103. PubMed ID: 19679087
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The stability of transmembrane helices: a molecular dynamics study on the isolated helices of bacteriorhodopsin.
    Iyer LK; Vishveshwara S
    Biopolymers; 1996 Mar; 38(3):401-21. PubMed ID: 8906975
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Position of helical kinks in membrane protein crystal structures and the accuracy of computational prediction.
    Hall SE; Roberts K; Vaidehi N
    J Mol Graph Model; 2009; 27(8):944-50. PubMed ID: 19285892
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydrogen-bond energetics drive helix formation in membrane interfaces.
    Almeida PF; Ladokhin AS; White SH
    Biochim Biophys Acta; 2012 Feb; 1818(2):178-82. PubMed ID: 21802405
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An energetic scale for equilibrium H/D fractionation factors illuminates hydrogen bond free energies in proteins.
    Cao Z; Bowie JU
    Protein Sci; 2014 May; 23(5):566-75. PubMed ID: 24501090
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Alteration of conformation and dynamics of bacteriorhodopsin induced by protonation of Asp 85 and deprotonation of Schiff base as studied by 13C NMR.
    Kawase Y; Tanio M; Kira A; Yamaguchi S; Tuzi S; Naito A; Kataoka M; Lanyi JK; Needleman R; Saitô H
    Biochemistry; 2000 Nov; 39(47):14472-80. PubMed ID: 11087400
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A triangle lattice model that predicts transmembrane helix configuration using a polar jigsaw puzzle.
    Hirokawa T; Uechi J; Sasamoto H; Suwa M; Mitaku S
    Protein Eng; 2000 Nov; 13(11):771-8. PubMed ID: 11161108
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rotational orientation of transmembrane alpha-helices in bacteriorhodopsin. A neutron diffraction study.
    Samatey FA; Zaccaï G; Engelman DM; Etchebest C; Popot JL
    J Mol Biol; 1994 Mar; 236(4):1093-104. PubMed ID: 8120889
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.