BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 22566699)

  • 1. Ack1-mediated androgen receptor phosphorylation modulates radiation resistance in castration-resistant prostate cancer.
    Mahajan K; Coppola D; Rawal B; Chen YA; Lawrence HR; Engelman RW; Lawrence NJ; Mahajan NP
    J Biol Chem; 2012 Jun; 287(26):22112-22. PubMed ID: 22566699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activated Cdc42-associated kinase Ack1 promotes prostate cancer progression via androgen receptor tyrosine phosphorylation.
    Mahajan NP; Liu Y; Majumder S; Warren MR; Parker CE; Mohler JL; Earp HS; Whang YE
    Proc Natl Acad Sci U S A; 2007 May; 104(20):8438-43. PubMed ID: 17494760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dasatinib inhibits site-specific tyrosine phosphorylation of androgen receptor by Ack1 and Src kinases.
    Liu Y; Karaca M; Zhang Z; Gioeli D; Earp HS; Whang YE
    Oncogene; 2010 Jun; 29(22):3208-16. PubMed ID: 20383201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chronologically modified androgen receptor in recurrent castration-resistant prostate cancer and its therapeutic targeting.
    Sawant M; Mahajan K; Renganathan A; Weimholt C; Luo J; Kukshal V; Jez JM; Jeon MS; Zhang B; Li T; Fang B; Luo Y; Lawrence NJ; Lawrence HR; Feng FY; Mahajan NP
    Sci Transl Med; 2022 Jun; 14(649):eabg4132. PubMed ID: 35704598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Ack1 tyrosine kinase inhibitor on ligand-independent androgen receptor activity.
    Mahajan K; Challa S; Coppola D; Lawrence H; Luo Y; Gevariya H; Zhu W; Chen YA; Lawrence NJ; Mahajan NP
    Prostate; 2010 Sep; 70(12):1274-85. PubMed ID: 20623637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ACK1/TNK2 Regulates Histone H4 Tyr88-phosphorylation and AR Gene Expression in Castration-Resistant Prostate Cancer.
    Mahajan K; Malla P; Lawrence HR; Chen Z; Kumar-Sinha C; Malik R; Shukla S; Kim J; Coppola D; Lawrence NJ; Mahajan NP
    Cancer Cell; 2017 Jun; 31(6):790-803.e8. PubMed ID: 28609657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ACK1/TNK2 tyrosine kinase: molecular signaling and evolving role in cancers.
    Mahajan K; Mahajan NP
    Oncogene; 2015 Aug; 34(32):4162-7. PubMed ID: 25347744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct transcriptional programs mediated by the ligand-dependent full-length androgen receptor and its splice variants in castration-resistant prostate cancer.
    Hu R; Lu C; Mostaghel EA; Yegnasubramanian S; Gurel M; Tannahill C; Edwards J; Isaacs WB; Nelson PS; Bluemn E; Plymate SR; Luo J
    Cancer Res; 2012 Jul; 72(14):3457-62. PubMed ID: 22710436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blockade of ACK1/TNK2 To Squelch the Survival of Prostate Cancer Stem-like Cells.
    Mahajan NP; Coppola D; Kim J; Lawrence HR; Lawrence NJ; Mahajan K
    Sci Rep; 2018 Jan; 8(1):1954. PubMed ID: 29386546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shepherding AKT and androgen receptor by Ack1 tyrosine kinase.
    Mahajan K; Mahajan NP
    J Cell Physiol; 2010 Aug; 224(2):327-33. PubMed ID: 20432460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction between androgen receptor and coregulator SLIRP is regulated by Ack1 tyrosine kinase and androgen.
    De Silva D; Zhang Z; Liu Y; Parker JS; Xu C; Cai L; Wang GG; Earp HS; Whang YE
    Sci Rep; 2019 Dec; 9(1):18637. PubMed ID: 31819114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting DNA Damage Response in Prostate Cancer by Inhibiting Androgen Receptor-CDC6-ATR-Chk1 Signaling.
    Karanika S; Karantanos T; Li L; Wang J; Park S; Yang G; Zuo X; Song JH; Maity SN; Manyam GC; Broom B; Aparicio AM; Gallick GE; Troncoso P; Corn PG; Navone N; Zhang W; Li S; Thompson TC
    Cell Rep; 2017 Feb; 18(8):1970-1981. PubMed ID: 28228262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Androgen receptor activation in castration-recurrent prostate cancer: the role of Src-family and Ack1 tyrosine kinases.
    Gelman IH
    Int J Biol Sci; 2014; 10(6):620-6. PubMed ID: 24948875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BMX-Mediated Regulation of Multiple Tyrosine Kinases Contributes to Castration Resistance in Prostate Cancer.
    Chen S; Cai C; Sowalsky AG; Ye H; Ma F; Yuan X; Simon NI; Gray NS; Balk SP
    Cancer Res; 2018 Sep; 78(18):5203-5215. PubMed ID: 30012673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acetylated HOXB13 Regulated Super Enhancer Genes Define Therapeutic Vulnerabilities of Castration-Resistant Prostate Cancer.
    Nguyen DT; Yang W; Renganathan A; Weimholt C; Angappulige DH; Nguyen T; Sprung RW; Andriole GL; Kim EH; Mahajan NP; Mahajan K
    Clin Cancer Res; 2022 Sep; 28(18):4131-4145. PubMed ID: 35849143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TNK2/ACK1-mediated phosphorylation of ATP5F1A (ATP synthase F1 subunit alpha) selectively augments survival of prostate cancer while engendering mitochondrial vulnerability.
    Chouhan S; Sawant M; Weimholt C; Luo J; Sprung RW; Terrado M; Mueller DM; Earp HS; Mahajan NP
    Autophagy; 2023 Mar; 19(3):1000-1025. PubMed ID: 35895804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of Plk1 represses androgen signaling pathway in castration-resistant prostate cancer.
    Zhang Z; Chen L; Wang H; Ahmad N; Liu X
    Cell Cycle; 2015; 14(13):2142-8. PubMed ID: 25927139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ACK1-AR and AR-HOXB13 signaling axes: epigenetic regulation of lethal prostate cancers.
    Kim EH; Cao D; Mahajan NP; Andriole GL; Mahajan K
    NAR Cancer; 2020 Sep; 2(3):zcaa018. PubMed ID: 32885168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NDRG2 acts as a negative regulator downstream of androgen receptor and inhibits the growth of androgen-dependent and castration-resistant prostate cancer.
    Yu C; Wu G; Li R; Gao L; Yang F; Zhao Y; Zhang J; Zhang R; Zhang J; Yao L; Yuan J; Li X
    Cancer Biol Ther; 2015; 16(2):287-96. PubMed ID: 25756511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gallic acid causes inactivating phosphorylation of cdc25A/cdc25C-cdc2 via ATM-Chk2 activation, leading to cell cycle arrest, and induces apoptosis in human prostate carcinoma DU145 cells.
    Agarwal C; Tyagi A; Agarwal R
    Mol Cancer Ther; 2006 Dec; 5(12):3294-302. PubMed ID: 17172433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.