These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 22567120)
21. Environmental Fate of Insecticidal Plant-Incorporated Protectants from Genetically Modified Crops: Knowledge Gaps and Research Opportunities. Parker KM; Sander M Environ Sci Technol; 2017 Nov; 51(21):12049-12057. PubMed ID: 28968072 [TBL] [Abstract][Full Text] [Related]
22. Limited fitness advantages of crop-weed hybrid progeny containing insect-resistant transgenes (Bt/CpTI) in transgenic rice field. Yang X; Wang F; Su J; Lu BR PLoS One; 2012; 7(7):e41220. PubMed ID: 22815975 [TBL] [Abstract][Full Text] [Related]
23. [Advances in effects of insecticidal crystal proteins released from transgenic Bt crops on soil ecology]. Zhou XY; Liu N; Zhao M; Li H; Zhou L; Tang ZW; Cao F; Li W Yi Chuan; 2011 May; 33(5):443-8. PubMed ID: 21586391 [TBL] [Abstract][Full Text] [Related]
24. Genetically modified crops: detection strategies and biosafety issues. Kamle S; Ali S Gene; 2013 Jun; 522(2):123-32. PubMed ID: 23566850 [TBL] [Abstract][Full Text] [Related]
25. The food and environmental safety of Bt crops. Koch MS; Ward JM; Levine SL; Baum JA; Vicini JL; Hammond BG Front Plant Sci; 2015; 6():283. PubMed ID: 25972882 [TBL] [Abstract][Full Text] [Related]
26. Responses to Bt toxin Vip3Aa by pink bollworm larvae resistant or susceptible to Cry toxins. Tabashnik BE; Unnithan GC; Yelich AJ; Fabrick JA; Dennehy TJ; Carrière Y Pest Manag Sci; 2022 Oct; 78(10):3973-3979. PubMed ID: 35633103 [TBL] [Abstract][Full Text] [Related]
27. Expression of an engineered synthetic cry2Aa (D42/K63F/K64P) gene of Bacillus thuringiensis in marker free transgenic tobacco facilitated full-protection from cotton leaf worm (S. littoralis) at very low concentration. Gayen S; Mandal CC; Samanta MK; Dey A; Sen SK World J Microbiol Biotechnol; 2016 Apr; 32(4):62. PubMed ID: 26925624 [TBL] [Abstract][Full Text] [Related]
28. Transportable data from non-target arthropod field studies for the environmental risk assessment of genetically modified maize expressing an insecticidal double-stranded RNA. Ahmad A; Negri I; Oliveira W; Brown C; Asiimwe P; Sammons B; Horak M; Jiang C; Carson D Transgenic Res; 2016 Feb; 25(1):1-17. PubMed ID: 26433587 [TBL] [Abstract][Full Text] [Related]
29. Development of dipsticks for simultaneous detection of vip3A and cry1Ab/cry1Ac transgenic proteins. Kumar R J AOAC Int; 2012; 95(4):1131-7. PubMed ID: 22970582 [TBL] [Abstract][Full Text] [Related]
30. Efficacy of a cry1Ab Gene for Control of Maruca vitrata (Lepidoptera: Crambidae) in Cowpea (Fabales: Fabaceae). Addae PC; Ishiyaku MF; Tignegre JB; Ba MN; Bationo JB; Atokple IDK; Abudulai M; Dabiré-Binso CL; Traore F; Saba M; Umar ML; Adazebra GA; Onyekachi FN; Nemeth MA; Huesing JE; Beach LR; Higgins TJV; Hellmich RL; Pittendrigh BR J Econ Entomol; 2020 Apr; 113(2):974-979. PubMed ID: 31967641 [TBL] [Abstract][Full Text] [Related]
31. Enhanced yield performance of Bt rice under target-insect attacks: implications for field insect management. Xia H; Lu BR; Xu K; Wang W; Yang X; Yang C; Luo J; Lai F; Ye W; Fu Q Transgenic Res; 2011 Jun; 20(3):655-64. PubMed ID: 20949317 [TBL] [Abstract][Full Text] [Related]
32. Cry64Ba and Cry64Ca, Two ETX/MTX2-Type Bacillus thuringiensis Insecticidal Proteins Active against Hemipteran Pests. Liu Y; Wang Y; Shu C; Lin K; Song F; Bravo A; Soberón M; Zhang J Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150505 [TBL] [Abstract][Full Text] [Related]
33. Procedure to select test organisms for environmental risk assessment of genetically modified crops in aquatic systems. Hilbeck A; Bundschuh R; Bundschuh M; Hofmann F; Oehen B; Otto M; Schulz R; Trtikova M Integr Environ Assess Manag; 2017 Nov; 13(6):974-979. PubMed ID: 28755496 [TBL] [Abstract][Full Text] [Related]
34. Resistance of Cabbage Loopers to Bacillus thuringiensis (Bt) Toxin Cry1F and to Dual-Bt Toxin WideStrike Cotton Plants. Kain W; Cotto-Rivera RO; Wang P Appl Environ Microbiol; 2022 Oct; 88(20):e0119422. PubMed ID: 36200769 [TBL] [Abstract][Full Text] [Related]
35. Potential shortfall of pyramided transgenic cotton for insect resistance management. Brévault T; Heuberger S; Zhang M; Ellers-Kirk C; Ni X; Masson L; Li X; Tabashnik BE; Carrière Y Proc Natl Acad Sci U S A; 2013 Apr; 110(15):5806-11. PubMed ID: 23530245 [TBL] [Abstract][Full Text] [Related]
36. Genetic engineering of crops for insect resistance: An overview. Talakayala A; Katta S; Garladinne M J Biosci; 2020; 45():. PubMed ID: 33051408 [TBL] [Abstract][Full Text] [Related]
37. Current Insights on Vegetative Insecticidal Proteins (Vip) as Next Generation Pest Killers. Syed T; Askari M; Meng Z; Li Y; Abid MA; Wei Y; Guo S; Liang C; Zhang R Toxins (Basel); 2020 Aug; 12(8):. PubMed ID: 32823872 [No Abstract] [Full Text] [Related]
38. An ultrasensitive label-free electrochemiluminescent immunosensor for measuring Cry1Ab level and genetically modified crops content. Gao H; Wen L; Wu Y; Fu Z; Wu G Biosens Bioelectron; 2017 Nov; 97():122-127. PubMed ID: 28582707 [TBL] [Abstract][Full Text] [Related]
39. Food and feed safety of the Bacillus thuringiensis derived protein Vpb4Da2, a novel protein for control of western corn rootworm. Edrington T; Wang R; McKinnon L; Kessenich C; Hodge-Bell K; Li W; Tan J; Brown G; Wang C; Li B; Giddings K PLoS One; 2022; 17(8):e0272311. PubMed ID: 35921368 [TBL] [Abstract][Full Text] [Related]
40. Effects of plants genetically modified for insect resistance on nontarget organisms. O'Callaghan M; Glare TR; Burgess EP; Malone LA Annu Rev Entomol; 2005; 50():271-92. PubMed ID: 15355241 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]