These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 22567578)

  • 61. Visualization and tissue classification of human breast cancer images using ultrahigh-resolution OCT.
    Yao X; Gan Y; Chang E; Hibshoosh H; Feldman S; Hendon C
    Lasers Surg Med; 2017 Mar; 49(3):258-269. PubMed ID: 28264146
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Segmentation of the urothelium in optical coherence tomography images with dynamic contrast.
    Xu Z; Zhu H; Wang H
    J Biomed Opt; 2021 Aug; 26(8):. PubMed ID: 34390233
    [TBL] [Abstract][Full Text] [Related]  

  • 63.
    Gong P; Es'haghian S; Harms KA; Murray A; Rea S; Wood FM; Sampson DD; McLaughlin RA
    Biomed Opt Express; 2016 Dec; 7(12):4886-4898. PubMed ID: 28018713
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Imaging of the pediatric airway using optical coherence tomography.
    Ridgway JM; Ahuja G; Guo S; Su J; Mahmood U; Chen Z; Wong B
    Laryngoscope; 2007 Dec; 117(12):2206-12. PubMed ID: 18322424
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Review of speckle and phase variance optical coherence tomography to visualize microvascular networks.
    Mahmud MS; Cadotte DW; Vuong B; Sun C; Luk TW; Mariampillai A; Yang VX
    J Biomed Opt; 2013 May; 18(5):50901. PubMed ID: 23616094
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Segmentation of the geographic atrophy in spectral-domain optical coherence tomography and fundus autofluorescence images.
    Hu Z; Medioni GG; Hernandez M; Hariri A; Wu X; Sadda SR
    Invest Ophthalmol Vis Sci; 2013 Dec; 54(13):8375-83. PubMed ID: 24265015
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Spectroscopic-speckle variance OCT for microvasculature detection and analysis.
    Liu X; Zhang K; Huang Y; Kang JU
    Biomed Opt Express; 2011 Nov; 2(11):2995-3009. PubMed ID: 22076262
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Speckle variance optical coherence tomography of the rodent spinal cord: in vivo feasibility.
    Cadotte DW; Mariampillai A; Cadotte A; Lee KK; Kiehl TR; Wilson BC; Fehlings MG; Yang VX
    Biomed Opt Express; 2012 May; 3(5):911-9. PubMed ID: 22567584
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Microvascular contrast enhancement in optical coherence tomography using microbubbles.
    Assadi H; Demidov V; Karshafian R; Douplik A; Vitkin IA
    J Biomed Opt; 2016 Jul; 21(7):76014. PubMed ID: 27533242
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A Novel Small Form-Factor Handheld Optical Coherence Tomography Probe for Oral Soft Tissue Imaging.
    Kushwaha AK; Ji M; Sethi S; Jamieson L; McLaughlin RA; Li J
    Micromachines (Basel); 2024 May; 15(6):. PubMed ID: 38930711
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Advances in optical coherence tomography imaging for dermatology.
    Pierce MC; Strasswimmer J; Park BH; Cense B; de Boer JF
    J Invest Dermatol; 2004 Sep; 123(3):458-63. PubMed ID: 15304083
    [TBL] [Abstract][Full Text] [Related]  

  • 72. 250 kHz, 1.5 µm resolution SD-OCT for
    Tan B; Hosseinaee Z; Han L; Kralj O; Sorbara L; Bizheva K
    Biomed Opt Express; 2018 Dec; 9(12):6569-6583. PubMed ID: 31065450
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Spectral Domain Optical Coherence Tomography in Awake Rabbits Allows Identification of the Visual Streak, a Comparison with Histology.
    Lavaud A; Soukup P; Martin L; Hartnack S; Pot S
    Transl Vis Sci Technol; 2020 Apr; 9(5):13. PubMed ID: 32821485
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Imaging Microscopic Features of Keratoconic Corneal Morphology.
    Grieve K; Georgeon C; Andreiuolo F; Borderie M; Ghoubay D; Rault J; Borderie VM
    Cornea; 2016 Dec; 35(12):1621-1630. PubMed ID: 27560027
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Imaging and characterization of bioengineered blood vessels within a bioreactor using free-space and catheter-based OCT.
    Gurjarpadhye AA; Whited BM; Sampson A; Niu G; Sharma KS; Vogt WC; Wang G; Xu Y; Soker S; Rylander MN; Rylander CG
    Lasers Surg Med; 2013 Aug; 45(6):391-400. PubMed ID: 23740768
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Myocardial imaging using ultrahigh-resolution spectral domain optical coherence tomography.
    Yao X; Gan Y; Marboe CC; Hendon CP
    J Biomed Opt; 2016 Jun; 21(6):61006. PubMed ID: 27001162
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Imaging deep skeletal muscle structure using a high-sensitivity ultrathin side-viewing optical coherence tomography needle probe.
    Yang X; Lorenser D; McLaughlin RA; Kirk RW; Edmond M; Simpson MC; Grounds MD; Sampson DD
    Biomed Opt Express; 2013 Dec; 5(1):136-48. PubMed ID: 24466482
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Full-field optical coherence tomography of human donor and pathological corneas.
    Ghouali W; Grieve K; Bellefqih S; Sandali O; Harms F; Laroche L; Paques M; Borderie V
    Curr Eye Res; 2015 May; 40(5):526-34. PubMed ID: 25251769
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Optical coherence tomography in the assessment of suspicious oral lesions: an immediate ex vivo study.
    Hamdoon Z; Jerjes W; Upile T; McKenzie G; Jay A; Hopper C
    Photodiagnosis Photodyn Ther; 2013 Feb; 10(1):17-27. PubMed ID: 23465368
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Endoscopic Doppler optical coherence tomography in the human GI tract: initial experience.
    Yang VX; Tang SJ; Gordon ML; Qi B; Gardiner G; Cirocco M; Kortan P; Haber GB; Kandel G; Vitkin IA; Wilson BC; Marcon NE
    Gastrointest Endosc; 2005 Jun; 61(7):879-90. PubMed ID: 15933695
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.