BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 22567722)

  • 1. Accumulation and phytotoxicity of engineered nanoparticles to Cucurbita pepo.
    Hawthorne J; Musante C; Sinha SK; White JC
    Int J Phytoremediation; 2012 Apr; 14(4):429-42. PubMed ID: 22567722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toxicity of silver and copper to Cucurbita pepo: differential effects of nano and bulk-size particles.
    Musante C; White JC
    Environ Toxicol; 2012 Sep; 27(9):510-7. PubMed ID: 22887766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assay-dependent phytotoxicity of nanoparticles to plants.
    Stampoulis D; Sinha SK; White JC
    Environ Sci Technol; 2009 Dec; 43(24):9473-9. PubMed ID: 19924897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of Ag nanoparticle exposure on p,p'-DDE bioaccumulation by Cucurbita pepo (zucchini) and Glycine max (soybean).
    De La Torre-Roche R; Hawthorne J; Musante C; Xing B; Newman LA; Ma X; White JC
    Environ Sci Technol; 2013 Jan; 47(2):718-25. PubMed ID: 23252415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uptake and translocation of p,p'-dichlorodiphenyldichloroethylene supplied in hydroponics solution to Cucurbita.
    Gent MP; White JC; Parrish ZD; Isleyen M; Eitzer BD; Mattina MI
    Environ Toxicol Chem; 2007 Dec; 26(12):2467-75. PubMed ID: 18020671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix.
    Dimkpa CO; McLean JE; Martineau N; Britt DW; Haverkamp R; Anderson AJ
    Environ Sci Technol; 2013 Jan; 47(2):1082-90. PubMed ID: 23259709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.).
    Wang Z; Xie X; Zhao J; Liu X; Feng W; White JC; Xing B
    Environ Sci Technol; 2012 Apr; 46(8):4434-41. PubMed ID: 22435775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafish embryos.
    Asharani PV; Lianwu Y; Gong Z; Valiyaveettil S
    Nanotoxicology; 2011 Mar; 5(1):43-54. PubMed ID: 21417687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alteration of Crop Yield and Quality of Wheat upon Exposure to Silver Nanoparticles in a Life Cycle Study.
    Yang J; Jiang F; Ma C; Rui Y; Rui M; Adeel M; Cao W; Xing B
    J Agric Food Chem; 2018 Mar; 66(11):2589-2597. PubMed ID: 29451784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Particle-size dependent accumulation and trophic transfer of cerium oxide through a terrestrial food chain.
    Hawthorne J; De la Torre Roche R; Xing B; Newman LA; Ma X; Majumdar S; Gardea-Torresdey J; White JC
    Environ Sci Technol; 2014 Nov; 48(22):13102-9. PubMed ID: 25340623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissolved cerium contributes to uptake of Ce in the presence of differently sized CeO2-nanoparticles by three crop plants.
    Schwabe F; Tanner S; Schulin R; Rotzetter A; Stark W; von Quadt A; Nowack B
    Metallomics; 2015 Mar; 7(3):466-77. PubMed ID: 25634091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitivity of Mediterranean woody seedlings to copper, nickel and zinc.
    Fuentes D; Disante KB; Valdecantos A; Cortina J; Vallejo VR
    Chemosphere; 2007 Jan; 66(3):412-20. PubMed ID: 16870229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytotoxicity and accumulation of copper oxide nanoparticles to the Cu-tolerant plant Elsholtzia splendens.
    Shi J; Peng C; Yang Y; Yang J; Zhang H; Yuan X; Chen Y; Hu T
    Nanotoxicology; 2014 Mar; 8(2):179-88. PubMed ID: 23311584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of pruning and nodal adventitious roots on polychlorinated biphenyl uptake by Cucurbita pepo grown in field conditions.
    Low JE; Åslund ML; Rutter A; Zeeb BA
    Environ Pollut; 2011 Mar; 159(3):769-75. PubMed ID: 21168941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zinc and copper uptake by plants under two transpiration rates. Part I. Wheat (Triticum aestivum L.).
    Tani FH; Barrington S
    Environ Pollut; 2005 Dec; 138(3):538-47. PubMed ID: 16043273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nutrition influence on copper accumulation by Brassica pekinensis Rupr.
    Xiong ZT; Li YH; Xu B
    Ecotoxicol Environ Saf; 2002 Oct; 53(2):200-5. PubMed ID: 12568454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tannic acid alleviates bulk and nanoparticle Nd2O3 toxicity in pumpkin: a physiological and molecular response.
    Chen G; Ma C; Mukherjee A; Musante C; Zhang J; White JC; Dhankher OP; Xing B
    Nanotoxicology; 2016 Nov; 10(9):1243-53. PubMed ID: 27308847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduced Silver Nanoparticle Phytotoxicity in Crambe abyssinica with Enhanced Glutathione Production by Overexpressing Bacterial γ-Glutamylcysteine Synthase.
    Ma C; Chhikara S; Minocha R; Long S; Musante C; White JC; Xing B; Dhankher OP
    Environ Sci Technol; 2015 Aug; 49(16):10117-26. PubMed ID: 26186015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of surface-modified nano-scale carbon black on Cu and Zn fractionations in contaminated soil.
    Cheng JM; Liu YZ; Wang HW
    Int J Phytoremediation; 2014; 16(1):86-94. PubMed ID: 24912217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana.
    Geisler-Lee J; Wang Q; Yao Y; Zhang W; Geisler M; Li K; Huang Y; Chen Y; Kolmakov A; Ma X
    Nanotoxicology; 2013 May; 7(3):323-37. PubMed ID: 22263604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.