These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 22567724)

  • 1. Phytoremediation of the toxic effluent generated during recovery of precious metals from polymetallic sea nodules.
    Vaseem H; Banerjee TK
    Int J Phytoremediation; 2012; 14(5):457-66. PubMed ID: 22567724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decontamination of coal mine effluent generated at the Rajrappa coal mine using phytoremediation technology.
    Lakra KC; Lal B; Banerjee TK
    Int J Phytoremediation; 2017 Jun; 19(6):530-536. PubMed ID: 27936868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytoremediation of the coalmine effluent.
    Bharti S; Kumar Banerjee T
    Ecotoxicol Environ Saf; 2012 Jul; 81():36-42. PubMed ID: 22571948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heavy metals in water, sediments and wetland plants in an aquatic ecosystem of tropical industrial region, India.
    Rai PK
    Environ Monit Assess; 2009 Nov; 158(1-4):433-57. PubMed ID: 18998227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytoremediation potential of Lemna minor L. for heavy metals.
    Bokhari SH; Ahmad I; Mahmood-Ul-Hassan M; Mohammad A
    Int J Phytoremediation; 2016; 18(1):25-32. PubMed ID: 26114480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toxicity, accumulation, and removal of heavy metals by three aquatic macrophytes.
    Basile A; Sorbo S; Conte B; Cobianchi RC; Trinchella F; Capasso C; Carginale V
    Int J Phytoremediation; 2012 Apr; 14(4):374-87. PubMed ID: 22567718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina).
    Miretzky P; Saralegui A; Cirelli AF
    Chemosphere; 2004 Nov; 57(8):997-1005. PubMed ID: 15488590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioaccumulation of heavy metals in mullet (Mugil cephalus) and oyster (Crassostrea madrasensis) from Pulicat lake, south east coast of India.
    Laxmi Priya S; Senthilkumar B; Hariharan G; Paneer Selvam A; Purvaja R; Ramesh R
    Toxicol Ind Health; 2011 Mar; 27(2):117-26. PubMed ID: 20921056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distributions of metals in the food web of fishponds of Kolleru Lake, India.
    Adhikari S; Ghosh L; Giri BS; Ayyappan S
    Ecotoxicol Environ Saf; 2009 May; 72(4):1242-8. PubMed ID: 19070365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of metals in water and sediments of Hindon River, India: impact of industrial and urban discharges.
    Suthar S; Nema AK; Chabukdhara M; Gupta SK
    J Hazard Mater; 2009 Nov; 171(1-3):1088-95. PubMed ID: 19616893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heavy metal pollution in lentic ecosystem of sub-tropical industrial region and its phytoremediation.
    Rai PK
    Int J Phytoremediation; 2010 Mar; 12(3):226-42. PubMed ID: 20734618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial distribution of heavy metals in sediments from the Gulf of Paria, Trinidad.
    Norville W
    Rev Biol Trop; 2005 May; 53 Suppl 1():33-40. PubMed ID: 17465142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heavy-metal fractionation in surface sediments of the Cauvery River Estuarine Region, Southeastern coast of India.
    Dhanakumar S; Murthy KR; Solaraj G; Mohanraj R
    Arch Environ Contam Toxicol; 2013 Jul; 65(1):14-23. PubMed ID: 23519641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth responses and metal accumulation capabilities of woody plants during the phytoremediation of tannery sludge.
    Shukla OP; Juwarkar AA; Singh SK; Khan S; Rai UN
    Waste Manag; 2011 Jan; 31(1):115-23. PubMed ID: 20889325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Field-based investigation on phytoremediation potentials of Lemna minor and Azolla filiculoides in tropical, semiarid regions: Case of Ethiopia.
    Amare E; Kebede F; Berihu T; Mulat W
    Int J Phytoremediation; 2018 Aug; 20(10):965-972. PubMed ID: 29035573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heavy metals in three lakes in West Poland.
    Szymanowska A; Samecka-Cymerman A; Kempers AJ
    Ecotoxicol Environ Saf; 1999 May; 43(1):21-9. PubMed ID: 10330316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heavy metals (Zn, Pb, Cd and Cr) in fish, water and sediments sampled form Southern Caspian Sea, Iran.
    Tabari S; Saravi SS; Bandany GA; Dehghan A; Shokrzadeh M
    Toxicol Ind Health; 2010 Nov; 26(10):649-56. PubMed ID: 20639278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phytoremediation of Cd, Cr, Cu, Mn, Fe, Ni, Pb and Zn from aqueous solution using Phragmites cummunis, Typha angustifolia and Cyperus esculentus.
    Chandra R; Yadav S
    Int J Phytoremediation; 2011 Jul; 13(6):580-91. PubMed ID: 21972504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seasonal variation of metals in seawater, sediment, and Manila clam Ruditapes philippinarum from China.
    Zhao L; Yang F; Wang Y; Huo Z; Yan X
    Biol Trace Elem Res; 2013 Jun; 152(3):358-66. PubMed ID: 23412810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heavy metal pollution induced due to coal mining effluent on surrounding aquatic ecosystem and its management through naturally occurring aquatic macrophytes.
    Mishra VK; Upadhyaya AR; Pandey SK; Tripathi BD
    Bioresour Technol; 2008 Mar; 99(5):930-6. PubMed ID: 17475484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.