These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 22567726)
1. Phytoaccumulation and tolerance of Riccinus communis L. to nickel. Adhikari T; Kumar A Int J Phytoremediation; 2012; 14(5):481-92. PubMed ID: 22567726 [TBL] [Abstract][Full Text] [Related]
2. Determination of the phytoremediation efficiency of Ricinus communis L. and methane uptake from cadmium and nickel-contaminated soil using spent mushroom substrate. Sun Y; Wen C; Liang X; He C Environ Sci Pollut Res Int; 2018 Nov; 25(32):32603-32616. PubMed ID: 30242654 [TBL] [Abstract][Full Text] [Related]
3. Cadmium tolerance and its phytoremediation by two oil yielding plants Ricinus communis (L.) and Brassica juncea (L.) from the contaminated soil. Bauddh K; Singh RP Int J Phytoremediation; 2012 Sep; 14(8):772-85. PubMed ID: 22908643 [TBL] [Abstract][Full Text] [Related]
4. Assessing the tolerance of castor bean to Cd and Pb for phytoremediation purposes. de Souza Costa ET; Guilherme LR; de Melo EE; Ribeiro BT; Dos Santos B InĂ¡cio E; da Costa Severiano E; Faquin V; Hale BA Biol Trace Elem Res; 2012 Jan; 145(1):93-100. PubMed ID: 21826609 [TBL] [Abstract][Full Text] [Related]
5. Growth of Agropyron elongatum in a simulated nickel contaminated soil with lime stabilization. Chen Q; Wong JW Sci Total Environ; 2006 Aug; 366(2-3):448-55. PubMed ID: 16815530 [TBL] [Abstract][Full Text] [Related]
6. Root responses to soil Ni heterogeneity in a hyperaccumulator and a non-accumulator species. Moradi AB; Conesa HM; Robinson BH; Lehmann E; Kaestner A; Schulin R Environ Pollut; 2009; 157(8-9):2189-96. PubMed ID: 19427726 [TBL] [Abstract][Full Text] [Related]
7. Growth, tolerance efficiency and phytoremediation potential of Ricinus communis (L.) and Brassica juncea (L.) in salinity and drought affected cadmium contaminated soil. Bauddh K; Singh RP Ecotoxicol Environ Saf; 2012 Nov; 85():13-22. PubMed ID: 22959315 [TBL] [Abstract][Full Text] [Related]
8. Phytoextraction of zinc, copper, nickel and lead from a contaminated soil by different species of Brassica. Purakayastha TJ; Viswanath T; Bhadraray S; Chhonkar PK; Adhikari PP; Suribabu K Int J Phytoremediation; 2008; 10(1):61-72. PubMed ID: 18709932 [TBL] [Abstract][Full Text] [Related]
9. Ricinus communis L. A Value Added Crop for Remediation of Cadmium Contaminated Soil. Bauddh K; Singh K; Singh RP Bull Environ Contam Toxicol; 2016 Feb; 96(2):265-9. PubMed ID: 26464392 [TBL] [Abstract][Full Text] [Related]
10. Phytoremediation potential of castor (Ricinus communis L.) in the soils of the abandoned copper mine in Northern Oman: implications for arid regions. Palanivel TM; Pracejus B; Victor R Environ Sci Pollut Res Int; 2020 May; 27(14):17359-17369. PubMed ID: 32157545 [TBL] [Abstract][Full Text] [Related]
11. Effects of nickel hyperaccumulation on physiological characteristics of Alyssum murale grown on metal contaminated waste amended soil. Sellami R; Gharbi F; Rejeb S; Rejeb MN; Henchi B; Echevarria G; Morel JL Int J Phytoremediation; 2012 Jul; 14(6):609-20. PubMed ID: 22908630 [TBL] [Abstract][Full Text] [Related]
12. Inoculation of Ni-resistant plant growth promoting bacterium Psychrobacter sp. strain SRS8 for the improvement of nickel phytoextraction by energy crops. Ma Y; Rajkumar M; Vicente JA; Freitas H Int J Phytoremediation; 2011 Feb; 13(2):126-39. PubMed ID: 21598781 [TBL] [Abstract][Full Text] [Related]
13. The effect of long-term Cd and Ni exposure on seed endophytes of Agrostis capillaris and their potential application in phytoremediation of metal-contaminated soils. Truyens S; Jambon I; Croes S; Janssen J; Weyens N; Mench M; Carleer R; Cuypers A; Vangronsveld J Int J Phytoremediation; 2014; 16(7-12):643-59. PubMed ID: 24933875 [TBL] [Abstract][Full Text] [Related]
14. Influences of soil properties and leaching on nickel toxicity to barley root elongation. Li B; Zhang H; Ma Y; McLaughlin MJ Ecotoxicol Environ Saf; 2011 Mar; 74(3):459-66. PubMed ID: 21030088 [TBL] [Abstract][Full Text] [Related]
15. Chemical fractionation and heavy metal accumulation in the plant of Sesamum indicum (L.) var. T55 grown on soil amended with tannery sludge: Selection of single extractants. Gupta AK; Sinha S Chemosphere; 2006 Jun; 64(1):161-73. PubMed ID: 16330080 [TBL] [Abstract][Full Text] [Related]
16. Translocation of metals from fly ash amended soil in the plant of Sesbania cannabina L. Ritz: effect on antioxidants. Sinha S; Gupta AK Chemosphere; 2005 Dec; 61(8):1204-14. PubMed ID: 16226293 [TBL] [Abstract][Full Text] [Related]
18. Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.) seedlings grown in soil. Liu H; Zhang J; Christie P; Zhang F Sci Total Environ; 2008 May; 394(2-3):361-8. PubMed ID: 18325566 [TBL] [Abstract][Full Text] [Related]
19. Phytoaccumulation, interaction, toxicity and remediation of cadmium from Helianthus annuus L. (sunflower). Mani D; Sharma B; Kumar C Bull Environ Contam Toxicol; 2007 Jul; 79(1):71-9. PubMed ID: 17549427 [TBL] [Abstract][Full Text] [Related]
20. Silicate-mediated alleviation of Pb toxicity in banana grown in Pb-contaminated soil. Li L; Zheng C; Fu Y; Wu D; Yang X; Shen H Biol Trace Elem Res; 2012 Jan; 145(1):101-8. PubMed ID: 21826608 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]