These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 2256780)

  • 1. Repression of toxin production by tryptophan in Clostridium botulinum type E.
    Leyer GJ; Johnson EA
    Arch Microbiol; 1990; 154(5):443-7. PubMed ID: 2256780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of neurotoxin and protease formation in Clostridium botulinum Okra B and Hall A by arginine.
    Patterson-Curtis SI; Johnson EA
    Appl Environ Microbiol; 1989 Jun; 55(6):1544-8. PubMed ID: 2669631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of Botulinum Neurotoxin Synthesis and Toxin Complex Formation by Arginine and Glucose in Clostridium botulinum ATCC 3502.
    Fredrick CM; Lin G; Johnson EA
    Appl Environ Microbiol; 2017 Jul; 83(13):. PubMed ID: 28455330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative molecular topography of botulinum neurotoxins from Clostridium butyricum and Clostridium botulinum type E.
    Singh BR; Giménez JA; DasGupta BR
    Biochim Biophys Acta; 1991 Mar; 1077(1):119-26. PubMed ID: 1901221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production and purification of Clostridium botulinum type C and D neurotoxin.
    Gessler F; Böhnel H
    FEMS Immunol Med Microbiol; 1999 Jul; 24(3):361-7. PubMed ID: 10397323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of culture conditions for toxin production of type G Clostridium botulinum.
    Calleri de Milan MC; Mayorga LS; Puig de Centorbi ON
    Zentralbl Bakteriol; 1992 Jul; 277(2):161-9. PubMed ID: 1520974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toxin production by Clostridium botulinum type A under various fermentation conditions.
    Siegel LS; Metzger JF
    Appl Environ Microbiol; 1979 Oct; 38(4):606-11. PubMed ID: 44175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular and population strategies underpinning neurotoxin production and sporulation in
    Mertaoja A; Mascher G; Nowakowska MB; Korkeala H; Henriques AO; Lindstrom M
    mBio; 2023 Dec; 14(6):e0186623. PubMed ID: 37971252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for plasmid-mediated toxin and bacteriocin production in Clostridium botulinum type G.
    Eklund MW; Poysky FT; Mseitif LM; Strom MS
    Appl Environ Microbiol; 1988 Jun; 54(6):1405-8. PubMed ID: 2843093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxin production by Clostridium botulinum in grass.
    Notermans S; Kozaki S; van Schothorst M
    Appl Environ Microbiol; 1979 Nov; 38(5):767-71. PubMed ID: 44443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of fermentation conditions on toxin production by Clostridium botulinum type B.
    Siegel LS; Metzger JF
    Appl Environ Microbiol; 1980 Dec; 40(6):1023-6. PubMed ID: 7006503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Botulinum neurotoxins: more and more diverse and fascinating toxic proteins.
    Popoff MR
    J Infect Dis; 2014 Jan; 209(2):168-9. PubMed ID: 24106294
    [No Abstract]   [Full Text] [Related]  

  • 13. Clostridium botulinum and its neurotoxins: a metabolic and cellular perspective.
    Johnson EA; Bradshaw M
    Toxicon; 2001 Nov; 39(11):1703-22. PubMed ID: 11595633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Posttranslational Regulation of Botulinum Neurotoxin Production in Clostridium botulinum Hall A-
    Inzalaco HN; Tepp WH; Fredrick C; Bradshaw M; Johnson EA; Pellett S
    mSphere; 2021 Aug; 6(4):e0032821. PubMed ID: 34346710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Ultrastructure of Clostridium botulinum type E during the process of toxin formation].
    Lysenko AI; Cherniavskiĭ VI; Kulakova GS; Iskritskiĭ GV
    Mikrobiol Zh; 1973; 35(3):308-12. PubMed ID: 4598684
    [No Abstract]   [Full Text] [Related]  

  • 16. Development of improved defined media for Clostridium botulinum serotypes A, B, and E.
    Whitmer ME; Johnson EA
    Appl Environ Microbiol; 1988 Mar; 54(3):753-9. PubMed ID: 3288120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of carbon dioxide on growth of proteolytic Clostridium botulinum, its ability to produce neurotoxin, and its transcriptome.
    Artin I; Mason DR; Pin C; Schelin J; Peck MW; Holst E; Rådström P; Carter AT
    Appl Environ Microbiol; 2010 Feb; 76(4):1168-72. PubMed ID: 20038699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of water activity and pH on growth and toxin production by Clostridium botulinum type G.
    Briozzo J; de Lagarde EA; Chirife J; Parada JL
    Appl Environ Microbiol; 1986 Apr; 51(4):844-8. PubMed ID: 3518631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dependence of Clostridium botulinum gas and protease production on culture conditions.
    Montville TJ
    Appl Environ Microbiol; 1983 Feb; 45(2):571-5. PubMed ID: 6338828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunological characterization of the neurotoxin produced by Clostridium botulinum type A associated with infant botulism in Japan.
    Kozaki S; Nakaue S; Kamata Y
    Microbiol Immunol; 1995; 39(10):767-74. PubMed ID: 8577267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.