BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 22568907)

  • 21. Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles.
    Song W; Zhang J; Guo J; Zhang J; Ding F; Li L; Sun Z
    Toxicol Lett; 2010 Dec; 199(3):389-97. PubMed ID: 20934491
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interactions between magnetic nanowires and living cells: uptake, toxicity, and degradation.
    Safi M; Yan M; Guedeau-Boudeville MA; Conjeaud H; Garnier-Thibaud V; Boggetto N; Baeza-Squiban A; Niedergang F; Averbeck D; Berret JF
    ACS Nano; 2011 Jul; 5(7):5354-64. PubMed ID: 21699198
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Iron Oxide Nanoparticle-Induced Neoplastic-Like Cell Transformation
    Kornberg TG; Stueckle TA; Coyle J; Derk R; Demokritou P; Rojanasakul Y; Rojanasakul LW
    Chem Res Toxicol; 2019 Dec; 32(12):2382-2397. PubMed ID: 31657553
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessing iron oxide nanoparticle toxicity in vitro: current status and future prospects.
    Soenen SJ; De Cuyper M
    Nanomedicine (Lond); 2010 Oct; 5(8):1261-75. PubMed ID: 21039201
    [TBL] [Abstract][Full Text] [Related]  

  • 25. IONP-PLL: a novel non-viral vector for efficient gene delivery.
    Xiang JJ; Tang JQ; Zhu SG; Nie XM; Lu HB; Shen SR; Li XL; Tang K; Zhou M; Li GY
    J Gene Med; 2003 Sep; 5(9):803-17. PubMed ID: 12950071
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Superparamagnetic iron oxide nanoparticles change endothelial cell morphology and mechanics via reactive oxygen species formation.
    Buyukhatipoglu K; Clyne AM
    J Biomed Mater Res A; 2011 Jan; 96(1):186-95. PubMed ID: 21105167
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhancement of neurite outgrowth in PC12 cells by iron oxide nanoparticles.
    Kim JA; Lee N; Kim BH; Rhee WJ; Yoon S; Hyeon T; Park TH
    Biomaterials; 2011 Apr; 32(11):2871-7. PubMed ID: 21288566
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Endocytotic uptake of iron oxide nanoparticles by cultured brain microglial cells.
    Luther EM; Petters C; Bulcke F; Kaltz A; Thiel K; Bickmeyer U; Dringen R
    Acta Biomater; 2013 Sep; 9(9):8454-65. PubMed ID: 23727247
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chemical transformation and cytotoxicity of iron oxide nanoparticles (IONPs) accumulated in mitochondria.
    Ruan L; Li H; Zhang J; Zhou M; Huang H; Dong J; Li J; Zhao F; Wu Z; Chen J; Chai Z; Hu Y
    Talanta; 2023 Jan; 251():123770. PubMed ID: 35961081
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integrated assessment of toxic effects of maghemite (γ-Fe
    Villacis RAR; Filho JS; Piña B; Azevedo RB; Pic-Taylor A; Mazzeu JF; Grisolia CK
    Aquat Toxicol; 2017 Oct; 191():219-225. PubMed ID: 28866281
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In Vitro/In Vivo Toxicity Evaluation and Quantification of Iron Oxide Nanoparticles.
    Patil US; Adireddy S; Jaiswal A; Mandava S; Lee BR; Chrisey DB
    Int J Mol Sci; 2015 Oct; 16(10):24417-50. PubMed ID: 26501258
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hematite nanoparticles larger than 90 nm show no sign of toxicity in terms of lactate dehydrogenase release, nitric oxide generation, apoptosis, and comet assay in murine alveolar macrophages and human lung epithelial cells.
    Freyria FS; Bonelli B; Tomatis M; Ghiazza M; Gazzano E; Ghigo D; Garrone E; Fubini B
    Chem Res Toxicol; 2012 Apr; 25(4):850-61. PubMed ID: 22324577
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vitro evaluation of the cytotoxicity of iron oxide nanoparticles with different coatings and different sizes in A3 human T lymphocytes.
    Ying E; Hwang HM
    Sci Total Environ; 2010 Sep; 408(20):4475-81. PubMed ID: 20673962
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The labeling of cationic iron oxide nanoparticle-resistant hepatocellular carcinoma cells using targeted magnetoliposomes.
    Soenen SJ; Brisson AR; Jonckheere E; Nuytten N; Tan S; Himmelreich U; De Cuyper M
    Biomaterials; 2011 Feb; 32(6):1748-58. PubMed ID: 21112624
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Protein corona acts as a protective shield against Fe3O4-PEG inflammation and ROS-induced toxicity in human macrophages.
    Escamilla-Rivera V; Uribe-Ramírez M; González-Pozos S; Lozano O; Lucas S; De Vizcaya-Ruiz A
    Toxicol Lett; 2016 Jan; 240(1):172-84. PubMed ID: 26518974
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Toward absolute quantification of iron oxide nanoparticles as well as cell internalized fraction using multiparametric MRI.
    Girard OM; Ramirez R; McCarty S; Mattrey RF
    Contrast Media Mol Imaging; 2012; 7(4):411-7. PubMed ID: 22649047
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protein adsorption of ultrafine metal oxide and its influence on cytotoxicity toward cultured cells.
    Horie M; Nishio K; Fujita K; Endoh S; Miyauchi A; Saito Y; Iwahashi H; Yamamoto K; Murayama H; Nakano H; Nanashima N; Niki E; Yoshida Y
    Chem Res Toxicol; 2009 Mar; 22(3):543-53. PubMed ID: 19216582
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Feraheme® suppresses immune function of human T lymphocytes through mitochondrial damage and mitoROS production.
    Shah A; Mankus CI; Vermilya AM; Soheilian F; Clogston JD; Dobrovolskaia MA
    Toxicol Appl Pharmacol; 2018 Jul; 350():52-63. PubMed ID: 29715466
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cytotoxicity of zinc oxide (ZnO) nanoparticles is influenced by cell density and culture format.
    Heng BC; Zhao X; Xiong S; Ng KW; Boey FY; Loo JS
    Arch Toxicol; 2011 Jun; 85(6):695-704. PubMed ID: 20938647
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Limitations and caveats of magnetic cell labeling using transfection agent complexed iron oxide nanoparticles.
    Soenen SJ; De Smedt SC; Braeckmans K
    Contrast Media Mol Imaging; 2012; 7(2):140-52. PubMed ID: 22434626
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.