These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 22569076)

  • 1. Effect of antimicrobial peptides on ATPase activity and proton pumping in plasma membrane vesicles obtained from mycobacteria.
    Santos P; Gordillo A; Osses L; Salazar LM; Soto CY
    Peptides; 2012 Jul; 36(1):121-8. PubMed ID: 22569076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction between antimicrobial peptides and mycobacteria.
    Gutsmann T
    Biochim Biophys Acta; 2016 May; 1858(5):1034-43. PubMed ID: 26851776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [In-vitro activity of two hybrid synthetic peptides having antimicrobial activity against mycobacteria].
    Zerbini E; Andreu D; Tonarelli G; Sequeira MD
    Rev Argent Microbiol; 2006; 38(4):221-3. PubMed ID: 17370578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CtpA, a putative Mycobacterium tuberculosis P-type ATPase, is stimulated by copper (I) in the mycobacterial plasma membrane.
    León-Torres A; Novoa-Aponte L; Soto CY
    Biometals; 2015 Aug; 28(4):713-24. PubMed ID: 25967101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of cationic antimicrobial peptides with phospholipid vesicles and their antibacterial activity.
    Chou HT; Wen HW; Kuo TY; Lin CC; Chen WJ
    Peptides; 2010 Oct; 31(10):1811-20. PubMed ID: 20600422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and synthesis of cationic antimicrobial peptides with improved activity and selectivity against Vibrio spp.
    Chou HT; Kuo TY; Chiang JC; Pei MJ; Yang WT; Yu HC; Lin SB; Chen WJ
    Int J Antimicrob Agents; 2008 Aug; 32(2):130-8. PubMed ID: 18586467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Screening of antitubercular compound library identifies novel ATP synthase inhibitors of Mycobacterium tuberculosis.
    Kumar S; Mehra R; Sharma S; Bokolia NP; Raina D; Nargotra A; Singh PP; Khan IA
    Tuberculosis (Edinb); 2018 Jan; 108():56-63. PubMed ID: 29523328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shortening the treatment of tuberculosis.
    Mitchison DA
    Nat Biotechnol; 2005 Feb; 23(2):187-8. PubMed ID: 15696148
    [No Abstract]   [Full Text] [Related]  

  • 9. The ATPase activity of the mycobacterial plasma membrane is inhibited by the LL37-analogous peptide LLAP.
    Chingaté S; Delgado G; Salazar LM; Soto CY
    Peptides; 2015 Sep; 71():222-8. PubMed ID: 26218806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Role of H+ ATPases in plasma membranes of airway smooth muscle].
    Pacheco G; de Alfonzo RG; de Bécemberg IL; Alfonzo MJ
    Acta Cient Venez; 1993; 44(2):111-9. PubMed ID: 8085404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fe(III) and Fe(II) ions different effects on Enterococcus hirae cell growth and membrane-associated ATPase activity.
    Vardanyan Z; Trchounian A
    Biochem Biophys Res Commun; 2012 Jan; 417(1):541-5. PubMed ID: 22166211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell selectivity, mechanism of action and LPS-neutralizing activity of bovine myeloid antimicrobial peptide-18 (BMAP-18) and its analogs.
    Lee EK; Kim YC; Nan YH; Shin SY
    Peptides; 2011 Jun; 32(6):1123-30. PubMed ID: 21497177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bestowing antifungal and antibacterial activities by lipophilic acid conjugation to D,L-amino acid-containing antimicrobial peptides: a plausible mode of action.
    Avrahami D; Shai Y
    Biochemistry; 2003 Dec; 42(50):14946-56. PubMed ID: 14674771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery of potent antimicrobial peptide analogs of Ixosin-B.
    Lung FD; Wang KS; Liao ZJ; Hsu SK; Song FY; Liou CC; Wu YS
    Bioorg Med Chem Lett; 2012 Jun; 22(12):4185-8. PubMed ID: 22578463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane interactions of designed cationic antimicrobial peptides: the two thresholds.
    Glukhov E; Burrows LL; Deber CM
    Biopolymers; 2008 May; 89(5):360-71. PubMed ID: 18186149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of Escherichia coli ATP synthase by amphibian antimicrobial peptides.
    Laughlin TF; Ahmad Z
    Int J Biol Macromol; 2010 Apr; 46(3):367-74. PubMed ID: 20100509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two novel families of antimicrobial peptides from skin secretions of the Chinese torrent frog, Amolops jingdongensis.
    Chen Z; Yang X; Liu Z; Zeng L; Lee W; Zhang Y
    Biochimie; 2012 Feb; 94(2):328-34. PubMed ID: 21816202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The DosR dormancy regulator of Mycobacterium tuberculosis stimulates the Na(+)/K (+) and Ca (2+) ATPase activities in plasma membrane vesicles of mycobacteria.
    Pulido PA; Novoa-Aponte L; Villamil N; Soto CY
    Curr Microbiol; 2014 Nov; 69(5):604-10. PubMed ID: 24939385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peptide hydrophobicity controls the activity and selectivity of magainin 2 amide in interaction with membranes.
    Wieprecht T; Dathe M; Beyermann M; Krause E; Maloy WL; MacDonald DL; Bienert M
    Biochemistry; 1997 May; 36(20):6124-32. PubMed ID: 9166783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective toxicity of antimicrobial peptide S-thanatin on bacteria.
    Wu G; Wu H; Fan X; Zhao R; Li X; Wang S; Ma Y; Shen Z; Xi T
    Peptides; 2010 Sep; 31(9):1669-73. PubMed ID: 20600431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.