These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
85 related articles for article (PubMed ID: 22569169)
1. Pituitary melanotrope cells of Xenopus laevis are of neural ridge origin and do not require induction by the infundibulum. Eagleson GW; Selten MM; Roubos EW; Jenks BG Gen Comp Endocrinol; 2012 Aug; 178(1):116-22. PubMed ID: 22569169 [TBL] [Abstract][Full Text] [Related]
2. Alpha-melanophore-stimulating hormone in the brain, cranial placode derivatives, and retina of Xenopus laevis during development in relation to background adaptation. Kramer BM; Claassen IE; Westphal NJ; Jansen M; Tuinhof R; Jenks BG; Roubos EW J Comp Neurol; 2003 Jan; 456(1):73-83. PubMed ID: 12508315 [TBL] [Abstract][Full Text] [Related]
3. Plasticity in the melanotrope neuroendocrine interface of Xenopus laevis. Jenks BG; Kidane AH; Scheenen WJ; Roubos EW Neuroendocrinology; 2007; 85(3):177-85. PubMed ID: 17389778 [TBL] [Abstract][Full Text] [Related]
5. The role of brain-derived neurotrophic factor in the regulation of cell growth and gene expression in melanotrope cells of Xenopus laevis. Jenks BG; Kuribara M; Kidane AH; Kramer BM; Roubos EW; Scheenen WJ Gen Comp Endocrinol; 2012 Jul; 177(3):315-21. PubMed ID: 22248443 [TBL] [Abstract][Full Text] [Related]
6. Evidence that brain-derived neurotrophic factor acts as an autocrine factor on pituitary melanotrope cells of Xenopus laevis. Kramer BM; Cruijsen PM; Ouwens DT; Coolen MW; Martens GJ; Roubos EW; Jenks BG Endocrinology; 2002 Apr; 143(4):1337-45. PubMed ID: 11897690 [TBL] [Abstract][Full Text] [Related]
7. Actions of PACAP and VIP on melanotrope cells of Xenopus laevis. Kidane AH; Cruijsen PM; Ortiz-Bazan MA; Vaudry H; Leprince J; Kuijpers-Kwant FJ; Roubos EW; Jenks BG Peptides; 2007 Sep; 28(9):1790-6. PubMed ID: 17482316 [TBL] [Abstract][Full Text] [Related]
8. A proteome map of the pituitary melanotrope cell activated by black-background adaptation of Xenopus laevis. Devreese B; Sergeant K; Van Bakel NH; Debyser G; Van Beeumen J; Martens GJ; Van Herp F Proteomics; 2010 Feb; 10(3):574-80. PubMed ID: 20029839 [TBL] [Abstract][Full Text] [Related]
9. Low temperature stimulates alpha-melanophore-stimulating hormone secretion and inhibits background adaptation in Xenopus laevis. Tonosaki Y; Cruijsen PM; Nishiyama K; Yaginuma H; Roubos EW J Neuroendocrinol; 2004 Nov; 16(11):894-905. PubMed ID: 15584930 [TBL] [Abstract][Full Text] [Related]
10. Identification of suprachiasmatic melanotrope-inhibiting neurons in Xenopus laevis: a confocal laser-scanning microscopy study. Ubink R; Tuinhof R; Roubos EW J Comp Neurol; 1998 Jul; 397(1):60-8. PubMed ID: 9671279 [TBL] [Abstract][Full Text] [Related]
11. Immunohistochemical studies on the development of the hypothalamo-hypophysial system in Xenopus laevis. Ogawa K; Suzuki E; Taniguchi K Anat Rec; 1995 Feb; 241(2):244-54. PubMed ID: 7710140 [TBL] [Abstract][Full Text] [Related]
12. Immunoblotting technique to study release of melanophore-stimulating hormone from individual melanotrope cells of the intermediate lobe of Xenopus laevis. de Rijk EP; Terlou M; Cruijsen PM; Jenks BG; Roubos EW Cytometry; 1992; 13(8):863-71. PubMed ID: 1333944 [TBL] [Abstract][Full Text] [Related]
13. Central control of melanotrope cells of Xenopus laevis. Tuinhof R; González A; Smeets WJ; Scheenen WJ; Roubos EW Eur J Morphol; 1994 Aug; 32(2-4):307-10. PubMed ID: 7803185 [TBL] [Abstract][Full Text] [Related]
14. BDNF stimulates Ca2+ oscillation frequency in melanotrope cells of Xenopus laevis: contribution of IP3-receptor-mediated release of intracellular Ca2+ to gene expression. Kuribara M; Eijsink VD; Roubos EW; Jenks BG; Scheenen WJ Gen Comp Endocrinol; 2010 Nov; 169(2):123-9. PubMed ID: 20736010 [TBL] [Abstract][Full Text] [Related]
15. Involvement of retinohypothalamic input, suprachiasmatic nucleus, magnocellular nucleus and locus coeruleus in control of melanotrope cells of Xenopus laevis: a retrograde and anterograde tracing study. Tuinhof R; Artero C; Fasolo A; Franzoni MF; Ten Donkelaar HJ; Wismans PG; Roubos EW Neuroscience; 1994 Jul; 61(2):411-20. PubMed ID: 7526268 [TBL] [Abstract][Full Text] [Related]
16. The pituitary adrenocorticotropes originate from neural ridge tissue in Xenopus laevis. Eagleson GW; Jenks BG; Van Overbeeke AP J Embryol Exp Morphol; 1986 Jun; 95():1-14. PubMed ID: 3025328 [TBL] [Abstract][Full Text] [Related]
17. Continuous illumination through larval development suppresses dopamine synthesis in the suprachiasmatic nucleus, causing activation of α-MSH synthesis in the pituitary and abnormal metamorphic skin pigmentation in flounder. Itoh K; Washio Y; Fujinami Y; Shimizu D; Uji S; Yokoi H; Suzuki T Gen Comp Endocrinol; 2012 Apr; 176(2):215-21. PubMed ID: 22326352 [TBL] [Abstract][Full Text] [Related]
18. Immunocytochemistry and in situ hybridization of neuropeptide Y in the hypothalamus of Xenopus laevis in relation to background adaptation. Tuinhof R; Laurent FY; Ebbers RG; Smeets WJ; Van Riel MC; Roubos EW Neuroscience; 1993 Aug; 55(3):667-75. PubMed ID: 8413929 [TBL] [Abstract][Full Text] [Related]
19. Analysis of the melanotrope cell neuroendocrine interface in two amphibian species, Rana ridibunda and Xenopus laevis: a celebration of 35 years of collaborative research. Jenks BG; Galas L; Kuribara M; Desrues L; Kidane AH; Vaudry H; Scheenen WJ; Roubos EW; Tonon MC Gen Comp Endocrinol; 2011 Jan; 170(1):57-67. PubMed ID: 20888821 [TBL] [Abstract][Full Text] [Related]
20. Evidence that urocortin I acts as a neurohormone to stimulate alpha MSH release in the toad Xenopus laevis. Calle M; Corstens GJ; Wang L; Kozicz T; Denver RJ; Barendregt HP; Roubos EW Brain Res; 2005 Apr; 1040(1-2):14-28. PubMed ID: 15804422 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]