These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 22569339)

  • 1. Prediction and identification of sequences coding for orphan enzymes using genomic and metagenomic neighbours.
    Yamada T; Waller AS; Raes J; Zelezniak A; Perchat N; Perret A; Salanoubat M; Patil KR; Weissenbach J; Bork P
    Mol Syst Biol; 2012 May; 8():581. PubMed ID: 22569339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The CanOE strategy: integrating genomic and metabolic contexts across multiple prokaryote genomes to find candidate genes for orphan enzymes.
    Smith AA; Belda E; Viari A; Medigue C; Vallenet D
    PLoS Comput Biol; 2012 May; 8(5):e1002540. PubMed ID: 22693442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probabilistic inference of biochemical reactions in microbial communities from metagenomic sequences.
    Jiao D; Ye Y; Tang H
    PLoS Comput Biol; 2013; 9(3):e1002981. PubMed ID: 23555216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From Gene Annotation to Function Prediction for Metagenomics.
    Sharifi F; Ye Y
    Methods Mol Biol; 2017; 1611():27-34. PubMed ID: 28451969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional metagenomics to mine the human gut microbiome for dietary fiber catabolic enzymes.
    Tasse L; Bercovici J; Pizzut-Serin S; Robe P; Tap J; Klopp C; Cantarel BL; Coutinho PM; Henrissat B; Leclerc M; Doré J; Monsan P; Remaud-Simeon M; Potocki-Veronese G
    Genome Res; 2010 Nov; 20(11):1605-12. PubMed ID: 20841432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Puzzling over orphan enzymes.
    Lespinet O; Labedan B
    Cell Mol Life Sci; 2006 Mar; 63(5):517-23. PubMed ID: 16465439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of enzymatic pathways by integrative pathway mapping.
    Calhoun S; Korczynska M; Wichelecki DJ; San Francisco B; Zhao S; Rodionov DA; Vetting MW; Al-Obaidi NF; Lin H; O'Meara MJ; Scott DA; Morris JH; Russel D; Almo SC; Osterman AL; Gerlt JA; Jacobson MP; Shoichet BK; Sali A
    Elife; 2018 Jan; 7():. PubMed ID: 29377793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ORENZA: a web resource for studying ORphan ENZyme activities.
    Lespinet O; Labedan B
    BMC Bioinformatics; 2006 Oct; 7():436. PubMed ID: 17026747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implementation of homology based and non-homology based computational methods for the identification and annotation of orphan enzymes: using Mycobacterium tuberculosis H37Rv as a case study.
    Sinha S; Lynn AM; Desai DK
    BMC Bioinformatics; 2020 Oct; 21(1):466. PubMed ID: 33076816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methods for the Isolation of Genes Encoding Novel PHA Metabolism Enzymes from Complex Microbial Communities.
    Cheng J; Nordeste R; Trainer MA; Charles TC
    Methods Mol Biol; 2017; 1539():237-248. PubMed ID: 27900694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of microbial phenotypes based on comparative genomics.
    Feldbauer R; Schulz F; Horn M; Rattei T
    BMC Bioinformatics; 2015; 16 Suppl 14(Suppl 14):S1. PubMed ID: 26451672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MinION™ nanopore sequencing of environmental metagenomes: a synthetic approach.
    Brown BL; Watson M; Minot SS; Rivera MC; Franklin RB
    Gigascience; 2017 Mar; 6(3):1-10. PubMed ID: 28327976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MetaProx: the database of metagenomic proximons.
    Vey G; Charles TC
    Database (Oxford); 2014; 2014():. PubMed ID: 25288655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. COGNIZER: A Framework for Functional Annotation of Metagenomic Datasets.
    Bose T; Haque MM; Reddy C; Mande SS
    PLoS One; 2015; 10(11):e0142102. PubMed ID: 26561344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Advances in Function-based Metagenomic Screening.
    Ngara TR; Zhang H
    Genomics Proteomics Bioinformatics; 2018 Dec; 16(6):405-415. PubMed ID: 30597257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A strategy for predicting gene functions from genome and metagenome sequences on the basis of oligopeptide frequency distance.
    Abe T; Ikarashi R; Mizoguchi M; Otake M; Ikemura T
    Genes Genet Syst; 2020 Apr; 95(1):11-19. PubMed ID: 32161228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved annotation through genome-scale metabolic modeling of Aspergillus oryzae.
    Vongsangnak W; Olsen P; Hansen K; Krogsgaard S; Nielsen J
    BMC Genomics; 2008 May; 9():245. PubMed ID: 18500999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating metagenomics tools for genome binning with real metagenomic datasets and CAMI datasets.
    Yue Y; Huang H; Qi Z; Dou HM; Liu XY; Han TF; Chen Y; Song XJ; Zhang YH; Tu J
    BMC Bioinformatics; 2020 Jul; 21(1):334. PubMed ID: 32723290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RemeDB: Tool for Rapid Prediction of Enzymes Involved in Bioremediation from High-Throughput Metagenome Data Sets.
    Sankara Subramanian SH; Balachandran KRS; Rangamaran VR; Gopal D
    J Comput Biol; 2020 Jul; 27(7):1020-1029. PubMed ID: 31800321
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.