These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 22569366)
1. Hydroxylation of 5-methylcytosine by TET2 maintains the active state of the mammalian HOXA cluster. Bocker MT; Tuorto F; Raddatz G; Musch T; Yang FC; Xu M; Lyko F; Breiling A Nat Commun; 2012 May; 3():818. PubMed ID: 22569366 [TBL] [Abstract][Full Text] [Related]
2. Distinct and overlapping control of 5-methylcytosine and 5-hydroxymethylcytosine by the TET proteins in human cancer cells. Putiri EL; Tiedemann RL; Thompson JJ; Liu C; Ho T; Choi JH; Robertson KD Genome Biol; 2014 Jun; 15(6):R81. PubMed ID: 24958354 [TBL] [Abstract][Full Text] [Related]
3. Combined deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible with postnatal development. Dawlaty MM; Breiling A; Le T; Raddatz G; Barrasa MI; Cheng AW; Gao Q; Powell BE; Li Z; Xu M; Faull KF; Lyko F; Jaenisch R Dev Cell; 2013 Feb; 24(3):310-23. PubMed ID: 23352810 [TBL] [Abstract][Full Text] [Related]
4. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Tahiliani M; Koh KP; Shen Y; Pastor WA; Bandukwala H; Brudno Y; Agarwal S; Iyer LM; Liu DR; Aravind L; Rao A Science; 2009 May; 324(5929):930-5. PubMed ID: 19372391 [TBL] [Abstract][Full Text] [Related]
5. Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells. Koh KP; Yabuuchi A; Rao S; Huang Y; Cunniff K; Nardone J; Laiho A; Tahiliani M; Sommer CA; Mostoslavsky G; Lahesmaa R; Orkin SH; Rodig SJ; Daley GQ; Rao A Cell Stem Cell; 2011 Feb; 8(2):200-13. PubMed ID: 21295276 [TBL] [Abstract][Full Text] [Related]
6. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Ito S; D'Alessio AC; Taranova OV; Hong K; Sowers LC; Zhang Y Nature; 2010 Aug; 466(7310):1129-33. PubMed ID: 20639862 [TBL] [Abstract][Full Text] [Related]
7. 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Wossidlo M; Nakamura T; Lepikhov K; Marques CJ; Zakhartchenko V; Boiani M; Arand J; Nakano T; Reik W; Walter J Nat Commun; 2011; 2():241. PubMed ID: 21407207 [TBL] [Abstract][Full Text] [Related]
8. 5mC oxidation by Tet2 modulates enhancer activity and timing of transcriptome reprogramming during differentiation. Hon GC; Song CX; Du T; Jin F; Selvaraj S; Lee AY; Yen CA; Ye Z; Mao SQ; Wang BA; Kuan S; Edsall LE; Zhao BS; Xu GL; He C; Ren B Mol Cell; 2014 Oct; 56(2):286-297. PubMed ID: 25263596 [TBL] [Abstract][Full Text] [Related]
9. Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Ficz G; Branco MR; Seisenberger S; Santos F; Krueger F; Hore TA; Marques CJ; Andrews S; Reik W Nature; 2011 May; 473(7347):398-402. PubMed ID: 21460836 [TBL] [Abstract][Full Text] [Related]
10. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Ko M; Huang Y; Jankowska AM; Pape UJ; Tahiliani M; Bandukwala HS; An J; Lamperti ED; Koh KP; Ganetzky R; Liu XS; Aravind L; Agarwal S; Maciejewski JP; Rao A Nature; 2010 Dec; 468(7325):839-43. PubMed ID: 21057493 [TBL] [Abstract][Full Text] [Related]
12. Genome-wide analysis identifies a functional association of Tet1 and Polycomb repressive complex 2 in mouse embryonic stem cells. Neri F; Incarnato D; Krepelova A; Rapelli S; Pagnani A; Zecchina R; Parlato C; Oliviero S Genome Biol; 2013 Aug; 14(8):R91. PubMed ID: 23987249 [TBL] [Abstract][Full Text] [Related]
13. Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells. Xu Y; Wu F; Tan L; Kong L; Xiong L; Deng J; Barbera AJ; Zheng L; Zhang H; Huang S; Min J; Nicholson T; Chen T; Xu G; Shi Y; Zhang K; Shi YG Mol Cell; 2011 May; 42(4):451-64. PubMed ID: 21514197 [TBL] [Abstract][Full Text] [Related]
14. Distinct and stage-specific contributions of TET1 and TET2 to stepwise cytosine oxidation in the transition from naive to primed pluripotency. Mulholland CB; Traube FR; Ugur E; Parsa E; Eckl EM; Schönung M; Modic M; Bartoschek MD; Stolz P; Ryan J; Carell T; Leonhardt H; Bultmann S Sci Rep; 2020 Jul; 10(1):12066. PubMed ID: 32694513 [TBL] [Abstract][Full Text] [Related]
15. PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC in early embryos. Nakamura T; Liu YJ; Nakashima H; Umehara H; Inoue K; Matoba S; Tachibana M; Ogura A; Shinkai Y; Nakano T Nature; 2012 Jun; 486(7403):415-9. PubMed ID: 22722204 [TBL] [Abstract][Full Text] [Related]
16. The histone deacetylase SIRT6 controls embryonic stem cell fate via TET-mediated production of 5-hydroxymethylcytosine. Etchegaray JP; Chavez L; Huang Y; Ross KN; Choi J; Martinez-Pastor B; Walsh RM; Sommer CA; Lienhard M; Gladden A; Kugel S; Silberman DM; Ramaswamy S; Mostoslavsky G; Hochedlinger K; Goren A; Rao A; Mostoslavsky R Nat Cell Biol; 2015 May; 17(5):545-57. PubMed ID: 25915124 [TBL] [Abstract][Full Text] [Related]
17. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Gu TP; Guo F; Yang H; Wu HP; Xu GF; Liu W; Xie ZG; Shi L; He X; Jin SG; Iqbal K; Shi YG; Deng Z; Szabó PE; Pfeifer GP; Li J; Xu GL Nature; 2011 Sep; 477(7366):606-10. PubMed ID: 21892189 [TBL] [Abstract][Full Text] [Related]
18. Structural insight into substrate preference for TET-mediated oxidation. Hu L; Lu J; Cheng J; Rao Q; Li Z; Hou H; Lou Z; Zhang L; Li W; Gong W; Liu M; Sun C; Yin X; Li J; Tan X; Wang P; Wang Y; Fang D; Cui Q; Yang P; He C; Jiang H; Luo C; Xu Y Nature; 2015 Nov; 527(7576):118-22. PubMed ID: 26524525 [TBL] [Abstract][Full Text] [Related]
20. Stage-specific roles for tet1 and tet2 in DNA demethylation in primordial germ cells. Vincent JJ; Huang Y; Chen PY; Feng S; Calvopiña JH; Nee K; Lee SA; Le T; Yoon AJ; Faull K; Fan G; Rao A; Jacobsen SE; Pellegrini M; Clark AT Cell Stem Cell; 2013 Apr; 12(4):470-8. PubMed ID: 23415914 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]