These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 22569370)

  • 1. Potential regime shift in decreased sea ice production after the Mertz Glacier calving.
    Tamura T; Williams GD; Fraser AD; Ohshima KI
    Nat Commun; 2012 May; 3():826. PubMed ID: 22569370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of the Mertz Glacier Tongue calving on dense water formation and export.
    Kusahara K; Hasumi H; Williams GD
    Nat Commun; 2011 Jan; 2():159. PubMed ID: 21245840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glacial ice and atmospheric forcing on the Mertz Glacier Polynya over the past 250 years.
    Campagne P; Crosta X; Houssais MN; Swingedouw D; Schmidt S; Martin A; Devred E; Capo S; Marieu V; Closset I; Massé G
    Nat Commun; 2015 Mar; 6():6642. PubMed ID: 25803779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accelerated freshening of Antarctic Bottom Water over the last decade in the Southern Indian Ocean.
    Menezes VV; Macdonald AM; Schatzman C
    Sci Adv; 2017 Jan; 3(1):e1601426. PubMed ID: 28138548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dominant frazil ice production in the Cape Darnley polynya leading to Antarctic Bottom Water formation.
    Ohshima KI; Fukamachi Y; Ito M; Nakata K; Simizu D; Ono K; Nomura D; Hashida G; Tamura T
    Sci Adv; 2022 Oct; 8(42):eadc9174. PubMed ID: 36260668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for large-scale climate forcing of dense shelf water variability in the Ross Sea.
    Zhang Z; Xie C; Castagno P; England MH; Wang X; Dinniman MS; Silvano A; Wang C; Zhou L; Li X; Zhou M; Budillon G
    Nat Commun; 2024 Sep; 15(1):8190. PubMed ID: 39294176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observed thinning of Totten Glacier is linked to coastal polynya variability.
    Khazendar A; Schodlok MP; Fenty I; Ligtenberg SR; Rignot E; van den Broeke MR
    Nat Commun; 2013; 4():2857. PubMed ID: 24305466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Freshening by glacial meltwater enhances melting of ice shelves and reduces formation of Antarctic Bottom Water.
    Silvano A; Rintoul SR; Peña-Molino B; Hobbs WR; van Wijk E; Aoki S; Tamura T; Williams GD
    Sci Adv; 2018 Apr; 4(4):eaap9467. PubMed ID: 29675467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in ice dynamics and mass balance of the Antarctic ice sheet.
    Rignot E
    Philos Trans A Math Phys Eng Sci; 2006 Jul; 364(1844):1637-55. PubMed ID: 16782604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The suppression of Antarctic bottom water formation by melting ice shelves in Prydz Bay.
    Williams GD; Herraiz-Borreguero L; Roquet F; Tamura T; Ohshima KI; Fukamachi Y; Fraser AD; Gao L; Chen H; McMahon CR; Harcourt R; Hindell M
    Nat Commun; 2016 Aug; 7():12577. PubMed ID: 27552365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pan-ice-sheet glacier terminus change in East Antarctica reveals sensitivity of Wilkes Land to sea-ice changes.
    Miles BW; Stokes CR; Jamieson SS
    Sci Adv; 2016 May; 2(5):e1501350. PubMed ID: 27386519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Projections of winter polynyas and their biophysical impacts in the Ross Sea Antarctica.
    DuVivier AK; Molina MJ; Deppenmeier AL; Holland MM; Landrum L; Krumhardt K; Jenouvrier S
    Clim Dyn; 2024; 62(2):989-1012. PubMed ID: 39328888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of Ice-Shelf Estuaries Promotes Fractures and Calving.
    Boghosian AL; Pitcher LH; Smith LC; Kosh E; Alexander PM; Tedesco M; Bell RE
    Nat Geosci; 2021 Dec; 14():899-905. PubMed ID: 34917170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High Salinity Shelf Water production rates in Terra Nova Bay, Ross Sea from high-resolution salinity observations.
    Miller UK; Zappa CJ; Gordon AL; Yoon ST; Stevens C; Lee WS
    Nat Commun; 2024 Jan; 15(1):373. PubMed ID: 38228621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strong ice-ocean interaction beneath Shirase Glacier Tongue in East Antarctica.
    Hirano D; Tamura T; Kusahara K; Ohshima KI; Nicholls KW; Ushio S; Simizu D; Ono K; Fujii M; Nogi Y; Aoki S
    Nat Commun; 2020 Aug; 11(1):4221. PubMed ID: 32839464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emerging long-term trends and interdecadal cycles in Antarctic polynyas.
    Duffy GA; Montiel F; Purich A; Fraser CI
    Proc Natl Acad Sci U S A; 2024 Mar; 121(11):e2321595121. PubMed ID: 38437551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wind causes Totten Ice Shelf melt and acceleration.
    Greene CA; Blankenship DD; Gwyther DE; Silvano A; van Wijk E
    Sci Adv; 2017 Nov; 3(11):e1701681. PubMed ID: 29109976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Internal tsunamigenesis and ocean mixing driven by glacier calving in Antarctica.
    Meredith MP; Inall ME; Brearley JA; Ehmen T; Sheen K; Munday D; Cook A; Retallick K; Van Landeghem K; Gerrish L; Annett A; Carvalho F; Jones R; Naveira Garabato AC; Bull CYS; Wallis BJ; Hogg AE; Scourse J
    Sci Adv; 2022 Nov; 8(47):eadd0720. PubMed ID: 36417533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Satellite record reveals 1960s acceleration of Totten Ice Shelf in East Antarctica.
    Li R; Cheng Y; Chang T; Gwyther DE; Forbes M; An L; Xia M; Yuan X; Qiao G; Tong X; Ye W
    Nat Commun; 2023 Jul; 14(1):4061. PubMed ID: 37429894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ocean heat drives rapid basal melt of the Totten Ice Shelf.
    Rintoul SR; Silvano A; Pena-Molino B; van Wijk E; Rosenberg M; Greenbaum JS; Blankenship DD
    Sci Adv; 2016 Dec; 2(12):e1601610. PubMed ID: 28028540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.