These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 22569371)

  • 1. Graphene quilts for thermal management of high-power GaN transistors.
    Yan Z; Liu G; Khan JM; Balandin AA
    Nat Commun; 2012 May; 3():827. PubMed ID: 22569371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Thermal Boundary Resistance on Thermal Management of Gallium-Nitride-Based Semiconductor Devices: A Review.
    Zhan T; Xu M; Cao Z; Zheng C; Kurita H; Narita F; Wu YJ; Xu Y; Wang H; Song M; Wang W; Zhou Y; Liu X; Shi Y; Jia Y; Guan S; Hanajiri T; Maekawa T; Okino A; Watanabe T
    Micromachines (Basel); 2023 Nov; 14(11):. PubMed ID: 38004933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High Thermal Stability and Low Thermal Resistance of Large Area GaN/3C-SiC/Diamond Junctions for Practical Device Processes.
    Kagawa R; Cheng Z; Kawamura K; Ohno Y; Moriyama C; Sakaida Y; Ouchi S; Uratani H; Inoue K; Nagai Y; Shigekawa N; Liang J
    Small; 2024 Mar; 20(13):e2305574. PubMed ID: 37964293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal Analysis of Flip-Chip Bonding Designs for GaN Power HEMTs with an On-Chip Heat-Spreading Layer.
    Hong KB; Peng CY; Lin WC; Chen KL; Chen SC; Kuo HC; Chang EY; Lin CH
    Micromachines (Basel); 2023 Feb; 14(3):. PubMed ID: 36984926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal Behavior of an AlGaN/GaN-Based Schottky Barrier Diode on Diamond and Silicon Substrates.
    Kim ZS; Lee HS; Bae SB; Ahn H; Lee SH; Lim JW; Kang DM
    J Nanosci Nanotechnol; 2021 Aug; 21(8):4429-4433. PubMed ID: 33714339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal Properties of Schottky Barrier Diode on AlGaN/GaN Heterostructures on Chemical Vapor Deposition Diamond.
    Kim ZS; Lee HS; Bae SB; Nam E; Lim JW
    J Nanosci Nanotechnol; 2019 Oct; 19(10):6119-6122. PubMed ID: 31026919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transferrable AlGaN/GaN High-Electron Mobility Transistors to Arbitrary Substrates via a Two-Dimensional Boron Nitride Release Layer.
    Motala MJ; Blanton EW; Hilton A; Heller E; Muratore C; Burzynski K; Brown JL; Chabak K; Durstock M; Snure M; Glavin NR
    ACS Appl Mater Interfaces; 2020 May; 12(19):21837-21844. PubMed ID: 32295338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AlGaN/GaN on SiC Devices without a GaN Buffer Layer: Electrical and Noise Characteristics.
    Jorudas J; Šimukovič A; Dub M; Sakowicz M; Prystawko P; Indrišiūnas S; Kovalevskij V; Rumyantsev S; Knap W; Kašalynas I
    Micromachines (Basel); 2020 Dec; 11(12):. PubMed ID: 33419371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interfacial Thermal Conductance across Room-Temperature-Bonded GaN/Diamond Interfaces for GaN-on-Diamond Devices.
    Cheng Z; Mu F; Yates L; Suga T; Graham S
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8376-8384. PubMed ID: 31986013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transfer-Free Graphene-Like Thin Films on GaN LED Epiwafers Grown by PECVD Using an Ultrathin Pt Catalyst for Transparent Electrode Applications.
    Xiong F; Guo W; Feng S; Li X; Du Z; Wang L; Deng J; Sun J
    Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31661874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal Analysis and Operational Characteristics of an AlGaN/GaN High Electron Mobility Transistor with Copper-Filled Structures: A Simulation Study.
    Jang KW; Hwang IT; Kim HJ; Lee SH; Lim JW; Kim HS
    Micromachines (Basel); 2019 Dec; 11(1):. PubMed ID: 31906083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functionalization mediates heat transport in graphene nanoflakes.
    Han H; Zhang Y; Wang N; Samani MK; Ni Y; Mijbil ZY; Edwards M; Xiong S; Sääskilahti K; Murugesan M; Fu Y; Ye L; Sadeghi H; Bailey S; Kosevich YA; Lambert CJ; Liu J; Volz S
    Nat Commun; 2016 Apr; 7():11281. PubMed ID: 27125636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Explicit Thermal Resistance Model of Self-Heating Effects of AlGaN/GaN HEMTs with Linear and Non-Linear Thermal Conductivity.
    Chakraborty S; Amir W; Shin JW; Shin KY; Cho CY; Kim JM; Hoshi T; Tsutsumi T; Sugiyama H; Matsuzaki H; Kwon HM; Kim DH; Kim TW
    Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystalline Interlayers for Reducing the Effective Thermal Boundary Resistance in GaN-on-Diamond.
    Field DE; Cuenca JA; Smith M; Fairclough SM; Massabuau FC; Pomeroy JW; Williams O; Oliver RA; Thayne I; Kuball M
    ACS Appl Mater Interfaces; 2020 Dec; 12(48):54138-54145. PubMed ID: 33196180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative analysis of nano-scale structural and electrical properties in AlGaN/GaN high electron mobility transistors on SiC and sapphire substrates.
    Wang C; Cho SJ; Kim NY
    J Nanosci Nanotechnol; 2013 Oct; 13(10):7083-8. PubMed ID: 24245197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Record-Low Thermal Boundary Resistance between Diamond and GaN-on-SiC for Enabling Radiofrequency Device Cooling.
    Malakoutian M; Field DE; Hines NJ; Pasayat S; Graham S; Kuball M; Chowdhury S
    ACS Appl Mater Interfaces; 2021 Dec; 13(50):60553-60560. PubMed ID: 34875169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reliability Analysis of Flip-Chip Packaging GaN Chip with Nano-Silver Solder BUMP.
    Yan L; Liu P; Xu P; Tan L; Zhang Z
    Micromachines (Basel); 2023 Jun; 14(6):. PubMed ID: 37374830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A high thermal stability ohmic contact for GaN-based devices.
    Wu CY; Chao TS; Chou YC
    Nanoscale Adv; 2023 Sep; 5(19):5361-5366. PubMed ID: 37767046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal Boundary Resistance Extraction of GaN-on-Diamond Substrate from Transmission Line Method Pattern Using Micro-Raman Spectroscopy and Thermal Simulation.
    Ki RS; Seo KS; Cha HY
    J Nanosci Nanotechnol; 2021 Aug; 21(8):4434-4437. PubMed ID: 33714340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Overview of Normally-Off GaN-Based High Electron Mobility Transistors.
    Roccaforte F; Greco G; Fiorenza P; Iucolano F
    Materials (Basel); 2019 May; 12(10):. PubMed ID: 31096689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.