BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 22569412)

  • 1. Quantitative proteomic analysis of mitochondrial proteins reveals prosurvival mechanisms in the perpetuation of radiation-induced genomic instability.
    Thomas SN; Waters KM; Morgan WF; Yang AJ; Baulch JE
    Free Radic Biol Med; 2012 Aug; 53(3):618-28. PubMed ID: 22569412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic and epigenetic changes in chromosomally stable and unstable progeny of irradiated cells.
    Baulch JE; Aypar U; Waters KM; Yang AJ; Morgan WF
    PLoS One; 2014; 9(9):e107722. PubMed ID: 25251398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Profiling mitochondrial proteins in radiation-induced genome-unstable cell lines with persistent oxidative stress by mass spectrometry.
    Miller JH; Jin S; Morgan WF; Yang A; Wan Y; Aypar U; Peters JS; Springer DL
    Radiat Res; 2008 Jun; 169(6):700-6. PubMed ID: 18494543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A role for mitochondrial dysfunction in perpetuating radiation-induced genomic instability.
    Kim GJ; Fiskum GM; Morgan WF
    Cancer Res; 2006 Nov; 66(21):10377-83. PubMed ID: 17079457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial complex II dysfunction can contribute significantly to genomic instability after exposure to ionizing radiation.
    Dayal D; Martin SM; Owens KM; Aykin-Burns N; Zhu Y; Boominathan A; Pain D; Limoli CL; Goswami PC; Domann FE; Spitz DR
    Radiat Res; 2009 Dec; 172(6):737-45. PubMed ID: 19929420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA damage in cells exhibiting radiation-induced genomic instability.
    Keszenman DJ; Kolodiuk L; Baulch JE
    Mutagenesis; 2015 May; 30(3):451-8. PubMed ID: 25711497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential induction and activation of NF-kappaB transcription complexes in radiation-induced chromosomally unstable cell lines.
    Snyder AR; Morgan WF
    Environ Mol Mutagen; 2005; 45(2-3):177-87. PubMed ID: 15645469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteome of Bovine Mitochondria and Rod Outer Segment Disks: Commonalities and Differences.
    Bruschi M; Petretto A; Caicci F; Bartolucci M; Calzia D; Santucci L; Manni L; Ramenghi LA; Ghiggeri G; Traverso CE; Candiano G; Panfoli I
    J Proteome Res; 2018 Feb; 17(2):918-925. PubMed ID: 29299929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial dysfunction, persistently elevated levels of reactive oxygen species and radiation-induced genomic instability: a review.
    Kim GJ; Chandrasekaran K; Morgan WF
    Mutagenesis; 2006 Nov; 21(6):361-7. PubMed ID: 17065161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The death-inducing effect and genomic instability.
    Nagar S; Morgan WF
    Radiat Res; 2005 Mar; 163(3):316-23. PubMed ID: 15733038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic analysis and functional characterization of mouse brain mitochondria during aging reveal alterations in energy metabolism.
    Stauch KL; Purnell PR; Villeneuve LM; Fox HS
    Proteomics; 2015 May; 15(9):1574-86. PubMed ID: 25546256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interleukin 8 exhibits a pro-mitogenic and pro-survival role in radiation induced genomically unstable cells.
    Laiakis EC; Baulch JE; Morgan WF
    Mutat Res; 2008 Apr; 640(1-2):74-81. PubMed ID: 18242642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiation-induced chromosomal instability and gene expression profiling: searching for clues to initiation and perpetuation.
    Snyder AR; Morgan WF
    Mutat Res; 2004 Dec; 568(1):89-96. PubMed ID: 15530542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiation-induced epigenetic alterations after low and high LET irradiations.
    Aypar U; Morgan WF; Baulch JE
    Mutat Res; 2011 Feb; 707(1-2):24-33. PubMed ID: 21159317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The yeast mitochondrial proteome, a study of fermentative and respiratory growth.
    Ohlmeier S; Kastaniotis AJ; Hiltunen JK; Bergmann U
    J Biol Chem; 2004 Feb; 279(6):3956-79. PubMed ID: 14597615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomic alterations in progeny of irradiated human liver cells.
    Zuo YH; Wang XL; Li JG; Dang XH; Wang ZW; Zhang SP; Tong J
    J Toxicol Environ Health A; 2010; 73(7):520-8. PubMed ID: 20391132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shot-gun proteomic analysis of mitochondrial D-loop DNA binding proteins: identification of mitochondrial histones.
    Choi YS; Hoon Jeong J; Min HK; Jung HJ; Hwang D; Lee SW; Kim Pak Y
    Mol Biosyst; 2011 May; 7(5):1523-36. PubMed ID: 21359316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomic analysis demonstrates the role of the quality control protease LONP1 in mitochondrial protein aggregation.
    Pollecker K; Sylvester M; Voos W
    J Biol Chem; 2021 Oct; 297(4):101134. PubMed ID: 34461102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial proteomics--a tool for the study of metabolic disorders.
    Gregersen N; Hansen J; Palmfeldt J
    J Inherit Metab Dis; 2012 Jul; 35(4):715-26. PubMed ID: 22526845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiation-induced genomic instability, epigenetic mechanisms and the mitochondria: a dysfunctional ménage a trois?
    Baulch JE
    Int J Radiat Biol; 2019 Apr; 95(4):516-525. PubMed ID: 30451575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.