These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 22569521)
1. Multiple-strategy analyses of ZmWRKY subgroups and functional exploration of ZmWRKY genes in pathogen responses. Wei K; Chen J; Chen Y; Wu L; Xie D Mol Biosyst; 2012 Jul; 8(7):1940-9. PubMed ID: 22569521 [TBL] [Abstract][Full Text] [Related]
2. Molecular cloning and expression analysis of WRKY transcription factor genes in Salvia miltiorrhiza. Li C; Li D; Shao F; Lu S BMC Genomics; 2015 Mar; 16(1):200. PubMed ID: 25881056 [TBL] [Abstract][Full Text] [Related]
3. Genome-wide identification and analysis of WRKY gene family in maize provide insights into regulatory network in response to abiotic stresses. Hu W; Ren Q; Chen Y; Xu G; Qian Y BMC Plant Biol; 2021 Sep; 21(1):427. PubMed ID: 34544366 [TBL] [Abstract][Full Text] [Related]
4. Genome-wide analysis of WOX gene family in rice, sorghum, maize, Arabidopsis and poplar. Zhang X; Zong J; Liu J; Yin J; Zhang D J Integr Plant Biol; 2010 Nov; 52(11):1016-26. PubMed ID: 20977659 [TBL] [Abstract][Full Text] [Related]
5. Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Qin F; Sakuma Y; Li J; Liu Q; Li YQ; Shinozaki K; Yamaguchi-Shinozaki K Plant Cell Physiol; 2004 Aug; 45(8):1042-52. PubMed ID: 15356330 [TBL] [Abstract][Full Text] [Related]
6. Systematic analysis and comparison of nucleotide-binding site disease resistance genes in maize. Cheng Y; Li X; Jiang H; Ma W; Miao W; Yamada T; Zhang M FEBS J; 2012 Jul; 279(13):2431-43. PubMed ID: 22564701 [TBL] [Abstract][Full Text] [Related]
7. A genome-wide analysis of the ERF gene family in sorghum. Yan HW; Hong L; Zhou YQ; Jiang HY; Zhu SW; Fan J; Cheng BJ Genet Mol Res; 2013 Jun; 12(2):2038-55. PubMed ID: 23766026 [TBL] [Abstract][Full Text] [Related]
8. Maize rough sheath2 and its Arabidopsis orthologue ASYMMETRIC LEAVES1 interact with HIRA, a predicted histone chaperone, to maintain knox gene silencing and determinacy during organogenesis. Phelps-Durr TL; Thomas J; Vahab P; Timmermans MC Plant Cell; 2005 Nov; 17(11):2886-98. PubMed ID: 16243907 [TBL] [Abstract][Full Text] [Related]
9. Transcriptional activation of secondary wall biosynthesis by rice and maize NAC and MYB transcription factors. Zhong R; Lee C; McCarthy RL; Reeves CK; Jones EG; Ye ZH Plant Cell Physiol; 2011 Oct; 52(10):1856-71. PubMed ID: 21908441 [TBL] [Abstract][Full Text] [Related]
10. Isolation and characterization of a C-repeat binding transcription factor from maize. Wang L; Luo Y; Zhang L; Zhao J; Hu Z; Fan Y; Zhang C J Integr Plant Biol; 2008 Aug; 50(8):965-74. PubMed ID: 18713346 [TBL] [Abstract][Full Text] [Related]
11. Genome-Wide Analysis of WRKY Gene Family and the Dynamic Responses of Key WRKY Genes Involved in Tang Y; Guo J; Zhang T; Bai S; He K; Wang Z Int J Mol Sci; 2021 Dec; 22(23):. PubMed ID: 34884854 [TBL] [Abstract][Full Text] [Related]
12. Molecular phylogenetic and expression analysis of the complete WRKY transcription factor family in maize. Wei KF; Chen J; Chen YF; Wu LJ; Xie DX DNA Res; 2012 Apr; 19(2):153-64. PubMed ID: 22279089 [TBL] [Abstract][Full Text] [Related]
13. Genome-Wide Characterization of the Maize ( Wang Y; Li W; Qu J; Li F; Du W; Weng J Int J Mol Sci; 2023 Oct; 24(19):. PubMed ID: 37834371 [TBL] [Abstract][Full Text] [Related]
14. Members of the Arabidopsis WRKY group III transcription factors are part of different plant defense signaling pathways. Kalde M; Barth M; Somssich IE; Lippok B Mol Plant Microbe Interact; 2003 Apr; 16(4):295-305. PubMed ID: 12744458 [TBL] [Abstract][Full Text] [Related]
15. The WRKY family of transcription factors in rice and Arabidopsis and their origins. Wu KL; Guo ZJ; Wang HH; Li J DNA Res; 2005 Feb; 12(1):9-26. PubMed ID: 16106749 [TBL] [Abstract][Full Text] [Related]
16. Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Zhou QY; Tian AG; Zou HF; Xie ZM; Lei G; Huang J; Wang CM; Wang HW; Zhang JS; Chen SY Plant Biotechnol J; 2008 Jun; 6(5):486-503. PubMed ID: 18384508 [TBL] [Abstract][Full Text] [Related]
17. Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Zheng Z; Qamar SA; Chen Z; Mengiste T Plant J; 2006 Nov; 48(4):592-605. PubMed ID: 17059405 [TBL] [Abstract][Full Text] [Related]
18. Four divergent Arabidopsis ethylene-responsive element-binding factor domains bind to a target DNA motif with a universal CG step core recognition and different flanking bases preference. Yang S; Wang S; Liu X; Yu Y; Yue L; Wang X; Hao D FEBS J; 2009 Dec; 276(23):7177-86. PubMed ID: 19878300 [TBL] [Abstract][Full Text] [Related]
19. Two recently duplicated maize NAC transcription factor paralogs are induced in response to Colletotrichum graminicola infection. Voitsik AM; Muench S; Deising HB; Voll LM BMC Plant Biol; 2013 May; 13():85. PubMed ID: 23718541 [TBL] [Abstract][Full Text] [Related]
20. Expression profiling and mutant analysis reveals complex regulatory networks involved in Arabidopsis response to Botrytis infection. AbuQamar S; Chen X; Dhawan R; Bluhm B; Salmeron J; Lam S; Dietrich RA; Mengiste T Plant J; 2006 Oct; 48(1):28-44. PubMed ID: 16925600 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]