BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

720 related articles for article (PubMed ID: 22569552)

  • 1. Tet family proteins and 5-hydroxymethylcytosine in development and disease.
    Tan L; Shi YG
    Development; 2012 Jun; 139(11):1895-902. PubMed ID: 22569552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of ten-eleven translocation proteins and 5-hydroxymethylcytosine in hepatocellular carcinoma.
    Wang P; Yan Y; Yu W; Zhang H
    Cell Prolif; 2019 Jul; 52(4):e12626. PubMed ID: 31033072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 5-Hydroxymethylcytosine: An epigenetic mark frequently deregulated in cancer.
    Kroeze LI; van der Reijden BA; Jansen JH
    Biochim Biophys Acta; 2015 Apr; 1855(2):144-54. PubMed ID: 25579174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tet family of 5-methylcytosine dioxygenases in mammalian development.
    Zhao H; Chen T
    J Hum Genet; 2013 Jul; 58(7):421-7. PubMed ID: 23719188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine.
    Ito S; Shen L; Dai Q; Wu SC; Collins LB; Swenberg JA; He C; Zhang Y
    Science; 2011 Sep; 333(6047):1300-3. PubMed ID: 21778364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and Function of TET Enzymes.
    Yin X; Xu Y
    Adv Exp Med Biol; 2016; 945():275-302. PubMed ID: 27826843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ten eleven translocation enzymes and 5-hydroxymethylation in mammalian development and cancer.
    Kinney SR; Pradhan S
    Adv Exp Med Biol; 2013; 754():57-79. PubMed ID: 22956496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural insight into substrate preference for TET-mediated oxidation.
    Hu L; Lu J; Cheng J; Rao Q; Li Z; Hou H; Lou Z; Zhang L; Li W; Gong W; Liu M; Sun C; Yin X; Li J; Tan X; Wang P; Wang Y; Fang D; Cui Q; Yang P; He C; Jiang H; Luo C; Xu Y
    Nature; 2015 Nov; 527(7576):118-22. PubMed ID: 26524525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic distribution and possible functions of DNA hydroxymethylation in the brain.
    Wen L; Tang F
    Genomics; 2014 Nov; 104(5):341-6. PubMed ID: 25205307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA.
    He YF; Li BZ; Li Z; Liu P; Wang Y; Tang Q; Ding J; Jia Y; Chen Z; Li L; Sun Y; Li X; Dai Q; Song CX; Zhang K; He C; Xu GL
    Science; 2011 Sep; 333(6047):1303-7. PubMed ID: 21817016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Resolution Analysis of 5-Hydroxymethylcytosine by TET-Assisted Bisulfite Sequencing.
    Huang Z; Meng Y; Szabó PE; Kohli RM; Pfeifer GP
    Methods Mol Biol; 2021; 2198():321-331. PubMed ID: 32822042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells.
    Xu Y; Wu F; Tan L; Kong L; Xiong L; Deng J; Barbera AJ; Zheng L; Zhang H; Huang S; Min J; Nicholson T; Chen T; Xu G; Shi Y; Zhang K; Shi YG
    Mol Cell; 2011 May; 42(4):451-64. PubMed ID: 21514197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic changes of DNA epigenetic marks in mouse oocytes during natural and accelerated aging.
    Qian Y; Tu J; Tang NL; Kong GW; Chung JP; Chan WY; Lee TL
    Int J Biochem Cell Biol; 2015 Oct; 67():121-7. PubMed ID: 25982203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of a Naegleria Tet-like dioxygenase in complex with 5-methylcytosine DNA.
    Hashimoto H; Pais JE; Zhang X; Saleh L; Fu ZQ; Dai N; Corrêa IR; Zheng Y; Cheng X
    Nature; 2014 Feb; 506(7488):391-5. PubMed ID: 24390346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation.
    Wu H; Zhang Y
    Genes Dev; 2011 Dec; 25(23):2436-52. PubMed ID: 22156206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emerging roles of TET proteins and 5-hydroxymethylcytosines in active DNA demethylation and beyond.
    Guo JU; Su Y; Zhong C; Ming GL; Song H
    Cell Cycle; 2011 Aug; 10(16):2662-8. PubMed ID: 21811096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expanding the epigenetic landscape: novel modifications of cytosine in genomic DNA.
    Kriaucionis S; Tahiliani M
    Cold Spring Harb Perspect Biol; 2014 Oct; 6(10):a018630. PubMed ID: 25274704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct and overlapping control of 5-methylcytosine and 5-hydroxymethylcytosine by the TET proteins in human cancer cells.
    Putiri EL; Tiedemann RL; Thompson JJ; Liu C; Ho T; Choi JH; Robertson KD
    Genome Biol; 2014 Jun; 15(6):R81. PubMed ID: 24958354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of ten-eleven translocation hydroxylase family proteins and 5-hydroxymethylcytosine in oligodendrocyte differentiation.
    Zhao X; Dai J; Ma Y; Mi Y; Cui D; Ju G; Macklin WB; Jin W
    Glia; 2014 Jun; 62(6):914-26. PubMed ID: 24615693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 5mC oxidation by Tet2 modulates enhancer activity and timing of transcriptome reprogramming during differentiation.
    Hon GC; Song CX; Du T; Jin F; Selvaraj S; Lee AY; Yen CA; Ye Z; Mao SQ; Wang BA; Kuan S; Edsall LE; Zhao BS; Xu GL; He C; Ren B
    Mol Cell; 2014 Oct; 56(2):286-297. PubMed ID: 25263596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.