BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

721 related articles for article (PubMed ID: 22569552)

  • 21. Tet1 and 5-hydroxymethylation: a genome-wide view in mouse embryonic stem cells.
    Wu H; Zhang Y
    Cell Cycle; 2011 Aug; 10(15):2428-36. PubMed ID: 21750410
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MicroRNA-29b/Tet1 regulatory axis epigenetically modulates mesendoderm differentiation in mouse embryonic stem cells.
    Tu J; Ng SH; Luk AC; Liao J; Jiang X; Feng B; Lun Mak KK; Rennert OM; Chan WY; Lee TL
    Nucleic Acids Res; 2015 Sep; 43(16):7805-22. PubMed ID: 26130713
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A sweet TET-à-tête-synergy of TET proteins and O-GlcNAc transferase in transcription.
    Mariappa D; Pathak S; van Aalten DM
    EMBO J; 2013 Mar; 32(5):612-3. PubMed ID: 23403924
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 5-hydroxymethylcytosine: a new insight into epigenetics in cancer.
    Ye C; Li L
    Cancer Biol Ther; 2014 Jan; 15(1):10-5. PubMed ID: 24253310
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Engineered Split-TET2 Enzyme for Inducible Epigenetic Remodeling.
    Lee M; Li J; Liang Y; Ma G; Zhang J; He L; Liu Y; Li Q; Li M; Sun D; Zhou Y; Huang Y
    J Am Chem Soc; 2017 Apr; 139(13):4659-4662. PubMed ID: 28294608
    [TBL] [Abstract][Full Text] [Related]  

  • 26. TET proteins and 5-methylcytosine oxidation in the immune system.
    Tsagaratou A; Rao A
    Cold Spring Harb Symp Quant Biol; 2013; 78():1-10. PubMed ID: 24619230
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Connections between TET proteins and aberrant DNA modification in cancer.
    Huang Y; Rao A
    Trends Genet; 2014 Oct; 30(10):464-74. PubMed ID: 25132561
    [TBL] [Abstract][Full Text] [Related]  

  • 28. PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC in early embryos.
    Nakamura T; Liu YJ; Nakashima H; Umehara H; Inoue K; Matoba S; Tachibana M; Ogura A; Shinkai Y; Nakano T
    Nature; 2012 Jun; 486(7403):415-9. PubMed ID: 22722204
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells.
    Blaschke K; Ebata KT; Karimi MM; Zepeda-Martínez JA; Goyal P; Mahapatra S; Tam A; Laird DJ; Hirst M; Rao A; Lorincz MC; Ramalho-Santos M
    Nature; 2013 Aug; 500(7461):222-6. PubMed ID: 23812591
    [TBL] [Abstract][Full Text] [Related]  

  • 30. De novo DNA methylation drives 5hmC accumulation in mouse zygotes.
    Amouroux R; Nashun B; Shirane K; Nakagawa S; Hill PW; D'Souza Z; Nakayama M; Matsuda M; Turp A; Ndjetehe E; Encheva V; Kudo NR; Koseki H; Sasaki H; Hajkova P
    Nat Cell Biol; 2016 Feb; 18(2):225-233. PubMed ID: 26751286
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Distinct and stage-specific contributions of TET1 and TET2 to stepwise cytosine oxidation in the transition from naive to primed pluripotency.
    Mulholland CB; Traube FR; Ugur E; Parsa E; Eckl EM; Schönung M; Modic M; Bartoschek MD; Stolz P; Ryan J; Carell T; Leonhardt H; Bultmann S
    Sci Rep; 2020 Jul; 10(1):12066. PubMed ID: 32694513
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos.
    Inoue A; Zhang Y
    Science; 2011 Oct; 334(6053):194. PubMed ID: 21940858
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MicroRNAs mediated targeting on the Yin-yang dynamics of DNA methylation in disease and development.
    Tu J; Liao J; Luk AC; Tang NL; Chan WY; Lee TL
    Int J Biochem Cell Biol; 2015 Oct; 67():115-20. PubMed ID: 25979370
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functions of TET Proteins in Hematopoietic Transformation.
    Han JA; An J; Ko M
    Mol Cells; 2015 Nov; 38(11):925-35. PubMed ID: 26552488
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of 5-hydroxymethylcytosine in development, aging and age-related diseases.
    López V; Fernández AF; Fraga MF
    Ageing Res Rev; 2017 Aug; 37():28-38. PubMed ID: 28499883
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Loss of 5-hydroxymethylcytosine in cancer: cause or consequence?
    Ficz G; Gribben JG
    Genomics; 2014 Nov; 104(5):352-7. PubMed ID: 25179374
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The hypomethylating agent Decitabine causes a paradoxical increase in 5-hydroxymethylcytosine in human leukemia cells.
    Chowdhury B; McGovern A; Cui Y; Choudhury SR; Cho IH; Cooper B; Chevassut T; Lossie AC; Irudayaraj J
    Sci Rep; 2015 Apr; 5():9281. PubMed ID: 25901663
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ascorbate induces ten-eleven translocation (Tet) methylcytosine dioxygenase-mediated generation of 5-hydroxymethylcytosine.
    Minor EA; Court BL; Young JI; Wang G
    J Biol Chem; 2013 May; 288(19):13669-74. PubMed ID: 23548903
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Physiological and pathological implications of 5-hydroxymethylcytosine in diseases.
    Liang J; Yang F; Zhao L; Bi C; Cai B
    Oncotarget; 2016 Jul; 7(30):48813-48831. PubMed ID: 27183914
    [TBL] [Abstract][Full Text] [Related]  

  • 40. TET methylcytosine oxidases: new insights from a decade of research.
    Lio CJ; Yue X; Lopez-Moyado IF; Tahiliani M; Aravind L; Rao A
    J Biosci; 2020; 45():. PubMed ID: 31965999
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 37.